期刊文献+

基于自适应动态窗口改进细菌算法与移动机器人路径规划 被引量:4

Mobile robot path planning based on improved Bacteria algorithm and DWA algorithm
下载PDF
导出
摘要 针对移动机器人在复杂环境下的路径规划问题,提出一种新的自适应动态窗口改进细菌算法,并将新算法应用于移动机器人路径规划。改进细菌算法继承了细菌算法与动态窗口算法(dynamic window algorithm,DWA)在避障时的优点,能较好实现复杂环境中移动机器人静态和动态避障。该改进算法主要分三步完成移动机器人路径规划。首先,利用改进细菌趋化算法在静态环境中得到初始参考规划路径。接着,基于参考路径,机器人通过自身携带的传感器感知动态障碍物进行动态避障并利用自适应DWA完成局部动态避障路径规划。最后,根据移动机器人局部动态避障完成情况选择算法执行步骤,如果移动机器人能达到最终目标点,结束该算法,否则移动机器人再重回初始路径,直至到达最终目标点。仿真比较实验证明,改进算法无论在收敛速度还是路径规划精确度方面都有明显提升。 To solve the path planning of mobile robots in complex environment,a novel path planning method is proposed which is based on improved bacterial chemotaxis and adaptive dynamic window algorithm.The novel method not only can inherit the advantages of the bacterial chemotaxis and dynamic window algorithm in avoiding obstacle,but also it can be used to avoid the static or dynamic obstacle for mobile robots.This new method can be mainly divided into three steps when it is used for the path planning of mobile robots.Firstly,the improved bacterial chemotaxis algorithm is applied to achieve an initial referential path in a static environment.Secondly,based on the initial planning path,the dynamic obstacle can be avoided by the using sensor and adaptive DWA.In the end,the mobile robot can select the next step based on the given result of avoiding dynamic obstacle.If the robot can accomplish local dynamic avoiding obstacle and reach the final target point,then the algorithm is terminated.Otherwise,the robot will return to the initial path until it reaches the final target point.Simulation results show that the improved algorithm can optimize the convergence speed and accuracy of planning path obviously.
作者 蒲兴成 谭令 PU Xingcheng;TAN Ling(School of Automation,Chongqing University of Posts and Telecommunications,Chongqing 400065,China;School of Mathematics and Computer Science,Tongling University,Tongling 244061,China)
出处 《智能系统学报》 CSCD 北大核心 2023年第2期314-324,共11页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金项目(61876200) 重庆市教委科研项目(KJZD-M202001901)。
关键词 复杂环境 机器人 细菌算法 自适应 动态窗口算法 参考路径 局部动态避障 路径规划 Complex environment Bacterial algorithm Dynamic window algorithm Local dynamic avoiding obstacle Path planning
  • 相关文献

参考文献9

二级参考文献147

  • 1刘洋,陈英武,谭跃进.一种有新任务到达的多卫星动态调度模型与方法[J].系统工程理论与实践,2005,25(4):35-41. 被引量:24
  • 2王凌,李彬彬,郑大钟,金以慧.模型降阶和参数估计的一种快速遗传算法[J].控制与决策,2005,20(4):426-429. 被引量:4
  • 3TSUJI T, SUZUKI M, TAKIGUCHI M, et al. Biomimetic con- trol based on a model of chemotaxis in escherichia coli [ J ]. Ar- tificial Life, 2010, 16(2): 155-177.
  • 4PASSINO K M. Biomimicry of bacterial foraging for distribu- ted optimization and control[ J]. IEEE Control System Mag- azine, 2002, 22(3): 52-67.
  • 5PASSINO K M. Bacterial foraging optimization [ J ]. Interna- tional Journal of Swarm Intelligence Research, 2010, 1 (1): 1-16.
  • 6BREMERMANN H J. Chemotaxis and optimizatian[ J]. Journal of The Franklin Institute, 1974, 297(5) : 397-404.
  • 7MULLER S D, AIRAGHI J, MARCHETI'O S, et al. Opti- mization based on bacterial chemotaxis [ J ]. IEEE Transac- tions on Evolutionary Computation, 2002, 6(1) : 16-29.
  • 8DI-IARIWAL A, SUKHATME G, REQUICHA A G. Bacte-rium-inspired robots for environmental monitorng[ C ]//Pro- ceedings of the 2006 IEEE International Conference on Ro- botics and Automation. New Orleans, USA, 2004 : 1436- 1443.
  • 9COELHO L D S, SIERAKOWSKI C A. Bacteria colony ap- proaches with variable velocity applied to path optimization of mobile robots [ C ]//ABCM Symposium Series in Mecha- tronics. Rio de Janeiro, Brazil: ABCM, 2006, 2: 297-304.
  • 10SIERAKOWSKI C A, COELHO L S. Study of two swarm in- telligence techniques for path planning of mobile robots [ C ]//Proceedings of the 16th IFAC World Congress. Prague, Czech Republic, 2005: 1-6.

共引文献166

同被引文献44

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部