期刊文献+

Enhanced ethanol sensing performance of N-doped ZnO derived from ZIF-8

原文传递
导出
摘要 Metal oxides derived from metal-organic framework(MOF) have attracted considerable attention due to its excellent performance and unique structure. Doping is considered as an effective method to improve gas-sensing performance. However, nonmetal doped metal oxides derived from MOF as gas-sensing materials have not been reported. Within this work, N atoms were successfully doped into the lattice of ZnO nanoparticles using ZIF-8 as a self-sacrificial template through a thermal treatment process with the assistant of urea. The obtained N-ZnO exhibited competitive ethanol-sensing performance, in which the response value of N-ZnO-5 to 100 ppm ethanol reached 115 at 190 ℃ with a satisfactory selectivity. It was found that the N-doping in ZnO facilitated the formation of oxygen vacancy that promoted the generation of adsorbed oxygen species to achieve the enhanced gas-sensing performance. Besides, the larger specific surface area resulting from the size reduction during the urea-assisted pyrolysis process can also be responsible for the improving of the ethanol-sensing performance.
出处 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第2期317-321,共5页 中国化学快报(英文版)
基金 supported by the National Natural Science Foundation of China (Nos. 21806008, 21876008) Science and Technology General Project of Beijing Municipal Education Commission, China (No. KM202110016010)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部