期刊文献+

Hypersonic shock wave and turbulent boundary layer interaction in a sharp cone/flare model 被引量:1

原文传递
导出
摘要 A direct numerical simulation of hypersonic Shock wave and Turbulent Boundary Layer Interaction(STBLI)at Mach 6.0 on a sharp 7.half-angle circular cone/flare configuration at zero angle of attack is performed.The flare angle is 34.and the momentum thickness Reynolds number based on the incoming turbulent boundary layer on the sharp circular cone is Re θ=2506.It is found that the mean flow is separated and the separation bubble occurring near the corner exhibits unsteadiness.The Reynolds analogy factor changes dramatically across the interaction,and varies between 1.06 and 1.27 in the downstream region,while the QP85 scaling factor has a nearly constant value of 0.5 across the interaction.The evolution of the reattached boundary layer is characterized in terms of the mean profiles,the Reynolds stress components,the anisotropy tensor and the turbulence kinetic energy.It is argued that the recovery is incomplete and the near-wall asymptotic behavior does not occur for the hypersonic interaction.In addition,mean skin friction decomposition in an axisymmetric turbulent boundary layer is carried out for the first time.Downstream of the interaction,the contributions of transverse curvature and body divergence are negligible,whereas the positive contribution associated with the turbulence kinetic energy production and the negative spatial-growth contribution are dominant.Based on scale decomposition,the positive contribution is further divided into terms with different spanwise length scales.The negative contribution is analyzed by comparing the convective term,the streamwise-heterogeneity term and the pressure gradient term.
出处 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第3期80-95,共16页 中国航空学报(英文版)
基金 co-supported by the National Natural Science Foundation of China(Nos.11972356 and 91852203) the National Key Research and Development Program of China(No.2019YFA0405300)。
  • 相关文献

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部