摘要
近年来不断增多的强台风天气给沿海及部分内陆地区配电网带来了愈发严重的损失,造成大规模重要负荷长时间失电,提高含多元源荷的主动配电网恢复能力成为亟待解决的问题。针对现有配电网负荷损失评估方法在强台风弱通信条件下无法准确获取节点信息而造成灾损分析精度不高的问题,提出一种基于Transformer深度学习网络的主动配电网多元源荷灾损辨识方法,充分利用深度学习网络去模型化的特点并发挥其在灾损预测精度方面的优势。考虑地面粗糙程度和高度,结合弱通信条件下的台风灾害气象数据,构建主动配电网所处地理环境的风速、降雨强度等气象信息修正模型;在此基础上考虑强台风致灾机理和主动配电网拓扑结构,利用Transformer深度学习方法构建配电网灾损辨识模型,实现强台风弱通信条件下的主动配电网多元源荷灾损辨识精度提升。通过对改进的IEEE 33节点主动配电网算例进行仿真测试,对损失负荷、损坏节点数等特征量进行计算,验证了所提主动配电网多元源荷灾损辨识方法能够满足台风多发配电网灾损评估精度。
In recent years, the increasing strong typhoon weather has brought more and more serious losses to the distribution network in coastal and some inland areas, resulting in large-scale power loss of important load for a long time. Improving the recovery capacity of active distribution networks containing multiple sources and loads has become an urgent problem to be solved. To deal with the problem that the existing power outage evaluation methods of distribution networks failed to obtain the information of the nodes, this paper proposes a novel evaluation method of power outage in active distribution networks containing multiple sources and loads on the basis of deep learning method, such as the Transformer model. Considering the ground roughness and height, meteorological information correction model of the geographical environment of the active distribution network is constructed combined with the typhoon disaster meteorological data under the condition of weak communication. On this basis, considering the disaster mechanism of strong typhoons and the topology of active distribution networks, the Transformer model is used to construct the power outage model of active distribution networks to improve the accuracy of power outage evaluation in active distribution networks containing multiple sources and loads. Through the simulation tests of the improved IEEE 33-node active distribution network, it is verified that the proposed power outage evaluation method for active distribution networks can meet the accuracy requirement of power outage evaluation in typhoon-prone distribution networks.
作者
纪鹏志
李光肖
王琳
刘思贤
刘宗杰
马梓耀
王照琪
唐巍
JI Pengzhi;LI Guangxiao;WANG Lin;LIU Sixian;LIU Zongjie;MA Ziyao;WANG Zhaoqi;TANG Wei(State Grid Jining Electric Power Supply Company,Jining 272100,Shandong Province,China;College of Information and Electrical Engineering,China Agricultural University,Beijing 100083,China)
出处
《电力建设》
CSCD
北大核心
2023年第3期56-65,共10页
Electric Power Construction
基金
国网山东省电力公司科技项目“面向多元源荷接入的主动配电网多目标协调规划技术研究”(5206002000R2)。
关键词
主动配电网
多元源荷
台风
灾损辨识
深度学习
active distribution network
multiple sources and loads
typhoon
power outage evaluation
deep learning