期刊文献+

Maps on Positive Cones of C^(*)-algebras

原文传递
导出
摘要 We prove that a surjective map(on the positive cones of unital C^(*)-algebras)preserves the minimum spectrum values of harmonic means if and only if it has a Jordan *-isomorphism extension to the whole algebra.We represent weighted geometric mean preserving bijective maps on the positive cones of prime C^(*)-algebras in terms of Jordan *-isomorphisms of the algebras.We also characterize order isomorphisms and orthoisomorphisms of the projection lattice of the von Neumann algebra of all bounded linear operators on a Hilbert space,answering an open question arisen by Dye.Finally,we give a description for Fuglede-Kadison determinant preserving maps on the positive cone of a finite von Neumann algebra and improve Gaal and Nayak’s work on this topic.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2023年第3期387-398,共12页 数学学报(英文版)
基金 supported by Louisiana Christian University Carolyn and Adams Dawson Professorship Fund(2206251515302) the second named author was supported by the NSFC(Grant No.11101220) the Fundamental Research Funds for the Central Universities(Grant No.96172373)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部