摘要
We prove Liouville type theorems for stable and finite Morse index H_(loc)^(1)∩L_(loc)^(∞)solutions of the nonlinear Schrodinger equation -Δu+λ|x|^(a)u=|x|b|^(u)|^(p-1)u in R^(N),where N≥2,λ>0,a,b>-2 and p>1,Our analysis reveals that all stable solutions of the equation must be zero for all p>1,Furthermore,finite Morse index solutions must be zero if N≥3 an p≥(N+2+2b)/(N-2).The main tools we use are integral estimates,a Pohozaev type identity and a monotonicity formula.
基金
Supported by University of Economics and Law,VNU-HCM。