期刊文献+

基于均方误差的多目标概率假设密度滤波器

The Mean Square Error-based Multi-target Probability Hypothesis Density Filter
下载PDF
导出
摘要 在噪声、杂波和漏检等因素干扰的目标跟踪下,标准概率假设密度滤波器的目标状态估计精度及其计算效率低,难以满足目标跟踪系统的要求。文章提出一种基于均方误差的多目标概率假设密度滤波器,主要包括目标量测和杂波划分以及目标分量选择与更新策略。目标量测和杂波划分策略识别源于真实目标的量测以构建目标量测集;目标分量选择与更新策略通过似然函数和卡尔曼增益选择和更新目标。结果表明,相对复杂跟踪场景下本文算法不仅具有较高的目标状态估计精度,而且具有相对较高的计算效率。 Under the target tracking of the interference uncertain factors such as noise,clutter and missed detection,the estimate accuracy of the target states and computational efficiency of the standard probability hypothesis density filter is low,which is difficult to meet the requirements of the target tracking system.In this paper,a multi-target probability hypothesis density filter based on mean square error is proposed,which mainly includes target measurement and clutter division scheme and target component selection and update scheme.Using the target measurement and clutter division scheme,the measurements originating from real targets are identified to construct target measurement set.The target component selection and update strategy selects and updates the target by the likelihood function and Kalman gain,so as to achieve the purpose of accurately updating the target intensity and optimizing the target component in the posterior intensity.Results show that the proposed algorithm has not only the high target state estimate accuracy,but also relatively high computational efficiency in the relative complex tracking scenarios.
作者 孙志强 SUN Zhiqiang(College of Mechanical and Electrical Engineering,Shangqiu Polytecnic,Shangqiu 476000,China)
出处 《清远职业技术学院学报》 2023年第2期68-73,共6页 Journal of Qingyuan Polytechnic
关键词 目标跟踪 概率假设密度 均方误差 状态估计 计算时间 Target tracking Probability hypothesis density Mean square error State estimate Computing time
  • 相关文献

参考文献15

二级参考文献85

  • 1潘泉,叶西宁,张洪才.广义概率数据关联算法[J].电子学报,2005,33(3):467-472. 被引量:29
  • 2Blackman S.Popoli R. Design and analysis of modern tracking systems[M]. Norwood, MA: Artech House,1999.
  • 3Bar-Shalom Y, Li X R. Multitarget-muitisensor tracking: principles and techniques[M]. Storrsv C"I , YBS Publishing, 1995.
  • 4Bar-Shalom Y, Tse E. Tracking in a cluttered environment with probabilistic data association [J]. Automatica, 1975, 11 (5) : 451 - 460.
  • 5Fortmann T Ev Bar-Shalom Y ,Scheffe M. Sonar tracking of multiple targets using joint probabilistic data association[J]. IEEE Journal of Oceanic Engineering ,1983,8(3) :173 -184.
  • 6Westenberger A, Duraisamy B, Munz M. Impact of out-of-sequence measurements on the joint integrated probabilistic data association filter for vehicle safety systerns [C]// Proc. of the IEEE Intelligent Vehicles Symposium, 2012 :438 - 443.
  • 7Georgescu R. Willett P. The multiple model CPHD tracker[J]. IEEE Trans. on Signal Processing. 2012. 60( 4) : 1741 - 175l.
  • 8Oualil Y, Faubel F, Klakow D. A multiple hypothesis Gaussian mixture filter for acoustic source localization and tracking] CJ II Proc. of the International Workshop on Acoustic Echo and Noise Control CIWAENC) ,2012:1 - 4.
  • 9Sathyan T,Chin T],Arulampalam S. A multiple hypothesis tracker for multi target tracking with multiple simultaneous measurements[J]. IEEE Journal of Selected TOPics in Signal Processing.2013.7(3): 448 - 460.
  • 10Mahler R. Statistical multisource-multitarget information fusion[M]. Norwood. MA: Artech House.2007.

共引文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部