期刊文献+

基于门控深度循环信念网络的边坡沉降预测 被引量:2

Slope settlement prediction based on gated deep recurrent belief network
下载PDF
导出
摘要 本研究针对现有边坡沉降预测模型精度低、无法有效反映沉降值蕴含的时序信息等问题,提出基于门控深度循环信念网络(GDRBN)的边坡沉降混合预测模型。为提高训练效率,引入自适应学习率,并以广佛肇高速公路二期工程为实例,建立多种边坡沉降预测模型,并进行计算比较。研究结果表明:基于GDRBN的边坡预测模型的预测精度比GM、BP、RNN、DBN预测模型的分别提高了69%、54%、38%、26%,可为边坡预测提供更准确的计算方法。 The existing slope settlement prediction models have low accuracy and cannot effectively reflect the time series information contained in the settlement.A hybrid prediction model for slope settlement was proposed based on the gated deep recurrent belief network(GDRBN).The adaptive learning rate is introduced to improve the efficiency of model training.Taking the project of the second phase of Guangfo-Zhaoqing Expressway as an example,different settlement prediction models was established,and the outcomes were contrasted.The results show that the proposed models will increase the accuracy of the prediction by 69%,54%,38%,and 26%,respectively,which is compared with traditional prediction models(such as GM,BP,RNN,DBN).It can provide a accurate calculation method for slope prediction.
作者 武焱 张映雪 WU Yan;ZHANG Yingxue(School of Traffic and Transportation Engineering,Changsha University of Science&Technology,Changsha 410114,China)
出处 《交通科学与工程》 2023年第1期26-34,41,共10页 Journal of Transport Science and Engineering
关键词 边坡 沉降预测 深度学习 循环神经网络 自适应学习率 side slope settlement prediction deep learning recurrent belief network adaptive learning rate
  • 相关文献

参考文献9

二级参考文献98

共引文献146

同被引文献18

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部