期刊文献+

基于GA-BP神经网络的钣金折弯过程随动预测模型

Prediction Model of Bending Follow-up Based on GA-BP Neural Network
下载PDF
导出
摘要 提出一种利用GA-BP神经网络预测钣金折弯过程中折弯机器人机械臂末端夹持点轨迹模型的方法。通过钣金折弯实验与ANSYS仿真对比,得到最佳的仿真条件;使用参数化建模,针对不同的影响因子如钣金材料的弹性模量、屈服强度、强化系数和钣金件及上下模几何形状等,进行批量化仿真获得模型训练数据;通过对BP神经网络训练建立折弯随动模型,并引入遗传算法对BP神经网络的初始权重和阈值进行优化,解决BP神经网络存在的过拟合和局部最优问题;通过测试集进行验证评估,结果表明该折弯随动模型相对误差在0.4%以内,可满足常规折弯工艺的应用需求。 A method for predicting the trajectory model of the end clamping point of bending robot manipulator in the process of sheet metal bending by using GA-BP neural network is proposed.Through the comparison between sheet metal bending experiment and ANSYS simulation,the best simulation conditions are obtained.For different influence factors such as elastic modulus,yield strength,strengthening coefficient of sheet metal materials,geometry of sheet metal parts and upper and lower dies,parametric modeling is applied to conduct batch simulation so as to gain the model training data.The bending follow-up model is established by training BP neural network,and the genetic algorithm is introduced to optimize the initial weight and threshold of BP neural network to solve the over fitting and local optimization of BP neural network.By test set,verification evaluation is carried out,whose result shows that the relative error of the bending follow-up model is less than 0.4%,which meets the application requirements of conventional bending process.
作者 张香港 游有鹏 王国富 ZHANG Xianggang;YOU Youpeng;WANG Guofu(College of Mechanical and Electrical Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)
出处 《机械制造与自动化》 2023年第2期81-84,共4页 Machine Building & Automation
基金 国家重点研发计划资助项目(2018YFB1309203)。
关键词 钣金 折弯随动 遗传算法 GA-BP神经网络 ANSYS仿真 sheet metal bending follow-up genetic algorithm GA-BP neural network ANSYS simulation
  • 相关文献

参考文献4

二级参考文献21

  • 1刘金琨.先进PID控制MATALAB仿真[M].北京:电子工业出版社,2012:19-21.
  • 2A.Sandford,Different Angles on Bending Automation,Machinery,September,2008:29-32.
  • 3Rui J.Guimaraes,JoséA.Pacheco,JoséF.Meireles,Jaime F.Fonseca.A BENDING CELL FOR SMALL BATCHES.7th EUROMECH Solid Mechanics Conference,September,2009.
  • 4许阳.基于CPAC的六自由度开放式机器人控制系统的开发[D].广东工业大学2013
  • 5严伟.折弯机械手的设计及其静动态特性分析[D].南京航空航天大学2012
  • 6王礴.CPAC系统设计及其在六自由度工业机器人控制上的应用[D].哈尔滨工业大学2008
  • 7N. Kontolatis,G.-C. Vosniakos.Optimisation of press-brake bending operations in 3D space[J]. Journal of Intelligent Manufacturing . 2012 (3)
  • 8Xiaoyun Liao,G.Gary Wang.Evolutionary path planning for robot assisted part handling in sheet metal bending[J]. Robotics and Computer Integrated Manufacturing . 2003 (5)
  • 9Shigeru Aomura,Atsushi Koguchi.Optimized bending sequences of sheet metal bending by robot[J]. Robotics and Computer Integrated Manufacturing . 2002 (1)
  • 10Raffaella Cagliano,Gianluca Spina.Advanced manufacturing technologies and strategically flexible production[J]. Journal of Operations Management . 2000 (2)

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部