摘要
过渡金属M-N-C单原子催化剂(SACs),特别是Fe-N-C催化剂.已被认为是替代铂族金属进行氧还原反应(ORR)的最佳候选材料之一.实验研究和理论计算均表明,FeN_(4)配位结构是Fe-N-C材料的活性中心,但实验合成不可避免的构型缺陷明显影响了FeN_(4)中心的物理性质和催化活性.目前有些技术能可控地产生缺陷,这为原子级调控Fe-N-C催化剂局部结构提供可能.目前关于缺陷对Fe-N-C材料ORR活性影响的计算研究仍存在一些不足,如未考虑Fe位点的预吸附行为,没有系统考察各种缺陷结构对FeN_(4)中心的ORR活性的影响.因此,探索不同缺陷类型及其位置对ORR活性的影响,揭示缺陷Fe-N-C催化剂的结构-性能关系,对于进一步指导实验调控局部结构以获得高性能的Fe-N-C氧还原催化剂具有极其重要的意义.本文在FeN_(4)位点周围的二、三、四壳层内构建了13种含555777缺陷的Fe-N-C模型、16种含5775缺陷的Fe-N-C模型和14种含585缺陷的Fe-N-C模型,研究了缺陷对Fe-N-C材料ORR活性的影响,以及缺陷种类和位置对FeN_(4)位点ORR活性的影响.首先通过DFT计算确定了缺陷Fe-N-C材料在ORR过程中真正的活性位点结构,即当Fe-N键长>2.10Å时,Fe位点不会预吸附任何中间体,其活性中心为FeN_(4),速率决定步骤(PDS)为*OH质子化为H_(2)O(*OH+H^(+)+e^(-)→*+H_(2)O);而当Fe-N键长<2.10Å时,Fe位点会预吸附*OH物种形成Fe(OH)N_(4)活性中心,其PDS为O_(2)质子为*OOH(*+O_(2)+H^(+)+e-→*OOH).预吸附的*OH会通过调节Fe(OH)N_(4)位点(特别是Fe-dz^(2)和dyz轨道之间)和再吸附的*OH中间体之间的电子分布,降低Fe中心的吸附能力,从而提高ORR活性.也进一步揭示了Fe(dxz)-O(px)、Fe(dyz)-O(py)和Fe(dz^(2))-O(pz+s)轨道的杂化是缺陷Fe-N-C材料ORR活性的来源.为了在不进行DFT计算的情况下实现结构-性能关系的预测,基于Fe(OH)N_(4)位点的LFe-OH(Fe-OH的键长)和LFe-defect(Fe原子和缺陷的距离),建立了一个通用的仅与材料本征性能相关的结构描述符φ,该描述符可以准确和定量地预测缺陷Fe-N-C催化剂的ORR活性.研究发现,5775和585缺陷的大环毗邻Fe-N-C五边形环时通常会增加LFe-OH和LFe-defect,这显著调节了Fe-dyz轨道在费米能级上方的峰值位置,以接近最佳能级,从而提高了ORR性能.此外,提出了与Fe-N键长相关的指数α,以确认实验中是否形成主动设计的缺陷.综上,本文揭示了缺陷Fe-N-C材料的ORR活性来源,建立了一个内在的结构描述符φ,可以无需DFT计算准确预测ORR活性,为通过缺陷工程提高Fe-N-C的ORR性能提供了新思路.
Fe‐N‐C single‐atom catalysts(SACs)have been widely considered as a promising candidate for oxygen reduction reaction(ORR),and its intrinsic activity is closely related to electronic and geometric structure of graphene supports.The carbon defect is widely existed in graphene,of which the intrinsic effect on ORR activity of Fe‐N‐C is still unclear.Here,we investigate ORR activity of 43 models representing Fe‐N‐C SACs accompanying with defects,including 555777,5775 and 585‐defects in three shell distances around FeN_(4)site.Both pre‐adsorption of hydroxide radical during ORR and the distance between Fe SAC and defect are demonstrated to affect the orbital hybridizations between Fe SAC and*OH intermediate,including Fe(d_(xz))‐O(px),Fe(d_(yz))‐O(p_(y))and Fe(d_(z)^(2))‐O(p_(z)+s)orbitals,which can accordingly regulate ORR activity of defective Fe‐N‐C materials.Importantly,we establish a geometrical structure descriptor to quantitatively predict the ORR activity of defective Fe‐N‐C catalysts without any requirements of performing DFT calculations.With the assistance of the structure descriptor,we find that the 585 and 5775‐defects of the large ring adjacent to the FeN_(4)pentagonal in fourth shell significantly boost the ORR performance of Fe‐N‐C.This work reveals the ORR activity origin of defective Fe‐N‐C materials,which provides intuitive guidance to boost the ORR performance of Fe‐N‐C materials by defect engineering,and may be extended to other types of defects and other single‐atom catalysts.
作者
姜润
乔泽龙
许昊翔
曹达鹏
Run Jiang;Zelong Qiao;Haoxiang Xu;Dapeng Cao(State Key Laboratory of Organic‐Inorganic Composites,Beijing University of Chemical Technology,Beijing 100029,China)
基金
国家重点研发计划(2019YFA0210300)
北京化工大学杰出人才基金.
关键词
单原子催化剂
氧还原反应
缺陷工程
轨道杂化理论
预吸附
结构描述符
Single‐atom catalyst
Oxygen reduction reaction
Defect engineering
Orbital hybridization theory
Pre‐adsorption
Structure descriptor