1Alves, C.O., Correa, F.J.S.A. Positive solutions for a quasilinear elliptic equation of Kirchhoff type. Comput. Math. Appl., 49:85-93 (2005).
2Ambrosetti, A., Rabinowitz, P. Dual variational methods in critical point theory and applications. J. Funct. Anal., 14:349-381 (1973).
3Ancona, P.D', Spagnolo, S. Global Solvability for the degenerate Kirchhoff equation with real analytic data. Invent. Math., 108:247-262 (1992).
4Andrade, D., Ma, T.F. An operator equation suggested by a class of nonlinear stationary problems. Comm. Appl. Nonli. Anal., 4:65-71 (1997).
5Arosio, A., Pannizi, S. On the well-posedness of the Kirchhoff string. Trans. Amer. Math. Soc., 348: 305-330 (1996).
6Bernstein, S. Sur une classe d'equations fonctionnelles aux derivees partielles. Izv. Akad. Nauk SSSR Ser. Mat., 4:17-26 (1940).
7Cavalcanti, M.M., Cavacanti, V.N., Soriano, J.A. Global existence and uniform decay rates for the Kirchhoff- Carrier equation with nonlinear dissipation. Adv. Diff. Eqns., 6:701-730 (2001).
8Chipot, M., Lovat, B. Some remarks on nonlocal elliptic and parabolic problems. Nonlinear Analysis, 30: 4619-4627 (1997).
9Chipot, M., Rodrigues, J.-F. On a class of nonlocal nonlinear elliptic problems. RAIRO Model. Math. Anal Numer., 26:447-467 (1992).
10Jeajean, L. On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer type problem set on R^N, Proc. Roy. Soc. Edinburgh Sect. A, 129:787-809 (1999).