期刊文献+

改进蚁群融合DWA算法的移动机器人路径规划 被引量:1

Mobile Robot Path Planning Based on Improved Ant Colony and DWA Algorithm
下载PDF
导出
摘要 为实现机器人在动态环境下的自主导航,基于蚁群算法规划出全局最优路径的情况下采用DWA算法进行局部避障。根据距离障碍栅格的远近计算邻接栅格的初始信息素,提出初始信息素不均匀分配原则;对启发式函数进行自适应调整的改进,提高算法的搜索速率;利用狼群法则改进信息素更新方式,对最优、最差和普通层蚂蚁进行分类更新,提高算法的寻优能力;使用二次路径优化的方法,有效减少路径长度,提高路径的平滑度;以蚁群算法全局规划路径的关键点为目标点,采用DWA算法进行局部路径规划。仿真结果表明:改进后的融合算法能减少最优路径长度,减少路径转弯次数且有效躲避障碍物。 In order to realize the autonomous navigation of mobile robot in dynamic environment,DWA algorithm is used to avoid local obstacles based on the global optimal path planned by ant colony algorithm.The initial pheromone of the adjacent grids is calculated according to the distance from the obstacle grid,and the principle of uneven distribution of the initial pheromone is proposed;the heuristic function is improved by adaptive adjustment to improve the search rate of the algorithm;the wolf group rule is used to improve the pheromone update mode,and the optimal,worst and ordinary layer ants are classified and updated to improve the optimization ability of the algorithm;The method of secondary path optimization is used to effectively reduce the length of the path and improve the smoothness of the path;Taking the key points of the global planning path of the ant colony algorithm as the target points,the DWA algorithm is used for local path planning.The simulation results show that the improved fusion algorithm can reduce the length of the optimal path,reduce the number of turns and effectively avoid obstacles.
作者 王倩 李俊丽 杨立炜 夏国锋 杜凌浩 Wang Qian;Li Junli;Yang Liwei;Xia Guofeng;Du Linghao(School of Information Engineering and Automation,Kunming University of Technology,Kunming 650504,China)
出处 《兵工自动化》 2023年第4期79-84,共6页 Ordnance Industry Automation
基金 国家自然科学基金(61163051)。
关键词 路径规划 蚁群算法 DWA算法 路径优化 path planning ant colony algorithm DWA algorithm path optimization
  • 相关文献

参考文献10

二级参考文献151

  • 1段俊花,李孝安.基于改进遗传算法的机器人路径规划[J].微电子学与计算机,2005,22(1):70-72. 被引量:27
  • 2朱庆保,张玉兰.基于栅格法的机器人路径规划蚁群算法[J].机器人,2005,27(2):132-136. 被引量:123
  • 3戴博,肖晓明,蔡自兴.移动机器人路径规划技术的研究现状与展望[J].控制工程,2005,12(3):198-202. 被引量:75
  • 4孙纯哲,桂贵生,韩东,张利.基于蚁群算法的移动机器人路径规划研究与应用[J].合肥工业大学学报(自然科学版),2006,29(10):1208-1211. 被引量:14
  • 5Dorigo M,Di Caro G.Ant algorithms for discrete optimization [J]. Artificial Life, 1999,5(2) : 137 - 172.
  • 6Dodgo M,Bonabeau E, Theraulaz G.Ant algorithms and stigmergy[ J ]. Future Generation Computer Systems, 2000, 16(9): 851 - 871.
  • 7Walter Gutjahr J. A graph-based ant system and its convergence [ J]. Future Generation Computer Systems, 2000, 16:873 - 888.
  • 8Bilchev G,Parmee I C. The ant colony metaphor for searching continuous design spaces [A]. Fogarty T. Lecture Notes in Computer Science[C]. Heidelberg: Springer Berlin, 1995.25 - 39.
  • 9Dero J, Siarry P. Continuous interacting ant colony algorithm based on dense heterarchy [ J ]. Future Generation Computer Systems, 2004,5 (20) : 841 - 856.
  • 10Karaboga N, Kalinli A, Karaboga D. Designing digital IIR filters using ant colony optimization algorithm[ J ]. Engineering Application of Artificial InteUigence, 2004,17(2) :301- 309.

共引文献712

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部