摘要
高速公路养护工作是保障综合交通、智慧交通、绿色交通和平安交通的基石。以人工为主的传统巡检方式,存在巡检效率低、时效性差,巡检过程中人员的人身安全难有保障,形成的巡检结果是非结构化数据等问题,难以推动道路设施精细化管养,很难满足我国大体量道路的运维管养需要。基于此,本文提出将低空遥感、人工智能、大数据和GIS等技术应用于道路巡检养护,搭建基于GIS技术的高性能云计算平台,采用基于卷积神经网络深度学习模型的自动识别技术,可实现海量遥感数据的高速处理和“一张图”可视化管理,能够显著提高高速公路巡检与运维管理水平。
Highway maintenance is the cornerstone of comprehensive,intelligent,green and safe transportation.Manual laborbased traditional inspection has flaws such as low efficiency,poor timeliness,can not guarantee the safety of personnel,as well as unstructured data and other issues,which is not conducive to the refined management and maintenance of road facilities,and failed to meet the demands of China’s large volume of road maintenance and management.Based on this,this paper proposes to apply lowaltitude remote sensing,AI,big data and GIS to road inspection,build a high-performance cloud computing platform based on GIS,and adopt automatic identification based on deep learning,which make it possible for high-speed processing of massive data and“one graph”visualization,so as to significantly enhance highway inspection,operation,maintenance and management.
作者
刘会会
张程程
刘奥祥
李振杰
Liu Huihui;Zhang Chengcheng;Liu Aoxiang;Li Zhenjie(Henan College of Transportation Technology,Zhengzhou 450064;Henan Provincial Transportation Business Development Center,Zhengzhou 450064;Zhengzhou Xintu Information Technology Co.,Zhengzhou 450064)
出处
《中阿科技论坛(中英文)》
2023年第4期116-120,共5页
China-Arab States Science and Technology Forum
基金
基于无人机遥感技术的高速公路综合巡护平台应用研究(2022-ZDXM-007)。