期刊文献+

基于数据重构的杂波抑制方法

Clutter Suppression Method Based on Data Reconstruction
下载PDF
导出
摘要 针对常规的动目标检测信号处理技术去杂波效果不理想的情况,提出了一种基于奇异值分解的数据重构方法进行杂波抑制。该方法对数据进行奇异值分解,在特征值域利用杂波信息确定约束门限,当特征值满足设定的门限要求时被保留,不满足时认为是杂波将其舍去,以此构建新的特征值矩阵和特征向量矩阵,从而重构杂波抑制后的时域数据。基于实测数据进行的仿真实验证明了所提方法的有效性。 Aiming at the unsatisfactory clutter suppression effect of conventional moving target detection signal processing algorithm,this paper proposes a data reconstruction method based on singular value decomposition for clutter suppression.In the method,singular value of data is decomposed,and clutter information in the eigenvalue domain is used to determine the constraint threshold.If the eigenvalue meets the set threshold requirements,it is retained;otherwise,it is considered to be clutters and then eliminated.Based on this,a new eigenvalue matrix and eigenvector matrix are constructed,and the time domain data after clutter suppression are reconstructed.The simulation experiments based on measured data demonstrate the effectiveness of proposed method.
作者 马艳艳 洪伟 齐永梅 MA Yan-yan;HONG Wei;QI Yong-mei(The 8th Research Academy of CSSC,Yangzhou 225101,China)
出处 《舰船电子对抗》 2023年第2期79-82,共4页 Shipboard Electronic Countermeasure
关键词 杂波抑制 奇异值分解 多普勒通道 信号重构 clutter suppression singular value decomposition doppler channel signal reconstruction
  • 相关文献

参考文献4

二级参考文献24

  • 1朱启兵,刘杰,李允公,闻邦椿.基于结构风险最小化原则的奇异值分解降噪研究[J].振动工程学报,2005,18(2):204-207. 被引量:19
  • 2Minka T P. Automatic choice of dimensionality for PCA[C]//Advances in Neural Information Process- ing Systems ( NIPS ) 13. Massachusetts: Mas- sachusetts Institute of Technology Press, 2001: 598- 604.
  • 3Kanjilal P P, Patit S. On multiple pattern extraction using singular value decomposition [J].Institute of Electrical and Electronics Engineers Transactions on Signal Processing, 1995, 43 (6):1536-1540.
  • 4WRIGHT J,YANG Y,GANESH A,etal.. Robust face recognition via sparse representation [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2009, 31 (2):210-227.
  • 5MAIRAL J, ELAD M, SAPIRO G. Sparse representation for color image restoration [J]. IEEE Trans on Image Processing, 28,17 ( 1 ) : 53-69.
  • 6WRIGHT J,YANG A,GANESH A,et al.. Robust face recognition via sparse representation [J]. IEEE Transactions on Patten Analysis and Ma- chine Intelligence, 2009,31 (2) : 210-227.
  • 7YAGHOOBI M, DAUDET L, DAVIES M. Parametric dictionary design for sparse coding [J]. IEEE Transactions on Signal Processing, 2009,57 (12) :4800-4810.
  • 8CAO Y, .IU R M,YANG J. Infrared small targets detection using PPCA [J]. International Journal of Infrared and Millimeter Waves, 2008,29 (4) : 385-395.
  • 9王维,张英堂,徐章遂.基于动态聚类的奇异值分解降噪方法研究[J].振动工程学报,2008,21(3):304-308. 被引量:17
  • 10康春玉,章新华.一种基于奇异值分解的自适应降噪方法[J].声学技术,2008,27(3):455-458. 被引量:17

共引文献138

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部