期刊文献+

复杂工况下油田机械设备运行状态监测方法 被引量:2

Monitoring Method for Operating State of Oilfield Machinery under Complex Working Conditions
下载PDF
导出
摘要 提出一种复杂工况下的油田机械设备运行状态监测方法,采用EMD方法对油田机械设备的振动信号进行去噪处理,结合ITD算法提取油田机械设备振动信号幅频特征,输入Teager能量算子获得振动信号幅频特征,运用SOFM网络分析该信号的幅频特性,得到特征聚类结果,在此基础上建立二叉树支持向量机,将特征聚类结果输入进去,完成油田机械设备运行状态的监测识别。实验结果表明,所提方法的监测性能良好,具有较高的监测效率。 A monitoring method for the operation status of oilfield machinery under complex working conditions was proposed,including having EMD method adopted to denoise vibration signals of oilfield machinery and the ITD algorithm combined to extract amplitude frequency characteristics of their vibration signals,and the Teager energy operator input to obtain amplitude frequency characteristics of the vibration signals as well as the SOFM network employed to analyze amplitude frequency characteristics of the signals so as to get feature clustering results.On this basis,the binary tree support vector machine was established and the feature clustering results were input to complete monitoring and identification of operating status.The experimental results show that,the method proposed has better monitoring performance and high efficiency.
作者 段秉红 DUAN Bing-hong(SINOPEC Shengli Oilfield Company)
出处 《化工机械》 CAS 2023年第2期169-174,共6页 Chemical Engineering & Machinery
关键词 油田机械设备 运行状态监测 振动信号幅频特征 聚类分析 二叉树支持向量机 oilfield machinery operation status monitoring vibration signal amplitude-frequency characteristics cluster analysis binary tree SVM
  • 相关文献

参考文献15

二级参考文献138

共引文献146

同被引文献13

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部