期刊文献+

Improving cooperativity of transcription activators by oligomerization domains in mammalian cells

原文传递
导出
摘要 Cooperative activation is critical for the applications of synthetic biology in mammalian cells.In this study,we have developed cooperative transcription factor by fusing oligomerization domain in mammalian cells.Firstly,we demonstrated that two oligomerized domains(CI434 and CI)successfully improved transcription factor cooperativity in bacterial cells but failed to increase cooperativity in mammalian cells,possibly because the additional mammalian activation domain disrupted their oligomerization capability.Therefore,we chose a different type of oligomerized domain(CarHC),whose ability to oligomerize is not dependent on its C-terminal domains,to fuse with a transcription factor(RpaR)and activation domain(VTR3),forming a potential cooperative transcription activator RpaR-CarH-VTR3 for mammalian regulatory systems.Compared with RpaR-VTR3,the cooperativity of RpaR-CarH-VTR3 was significantly improved with higher Hill coefficient and a narrower input range in the inducible switch system in mammalian cells.Moreover,a mathematical model based on statistical mechanics model was developed and the simulation results supported the hypothesis that the tetramer of the CarH domain in mammalian cells was the reason for the cooperative capacity of RpaR-CarH-VTR3.
出处 《Synthetic and Systems Biotechnology》 SCIE CSCD 2023年第1期114-120,共7页 合成和系统生物技术(英文)
基金 supported by Ministry of Science and Technology of China [No.2021YFA0910700,2021YFF1200500,2020YFA0907101] the Natural Science Foundation of China [No.12090050,12090054,32071412] the Chinese Academy of Sciences [No.QYZDB-SSW-SMC050] CAS Youth Interdisciplinary Team and the Shenzhen Science and Technology Innovation Committee [No.JCYJ20180507182241844,JCHZ20200005,DWKF20190009].
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部