期刊文献+

基于强化学习的无人机中继网络节点轨迹优化 被引量:2

Nodes’Trajectory Optimization of UAV Relay Networks Based on Reinforcement Learning
下载PDF
导出
摘要 无人机在远程采集和传输数据时可能遇到频谱不足的问题,此时需要借助地面网络共享频谱,即部分无人机获得地面网络提供的额外频谱作为回报,另一部分无人机为地面网络提供中继服务。针对无线网络频谱共享系统中多个无人机的飞行调度问题展开了研究,提出了一种基于Q-Learning的无人机飞行调度算法。在多个无人机进行数据中继传输时,该算法结合了放大转发和解码转发的特点,采用自适应转发模式,以最大化系统吞吐量。仿真结果表明,所提的调度算法可以对两个网络的无人机数目进行合理的分配,使每个无人机能够找到各自的最优或者次优位置,从而实现较高的系统吞吐量。 UAVs(Unmanned Aerial Vehicles)may encounter the problem of insufficient spectrum when collecting and transmitting data remotely.In this case,the ground network can be used to share the spectrum,that is,some UAVs can obtain additional spectrum provided by the ground network,and in return,others provide relay services to terrestrial networks.This paper addresses the flight scheduling problem of multiple UAVs in wireless network spectrum sharing systems,and proposes a Q-Learning based UAV flight scheduling algorithm.When multiple UAVs relay data,the algorithm combines the features of amplification forwarding and decoding forwarding,and adopts an adaptive forwarding mode to maximize system throughput.Simulation results indicate that the proposed scheduling algorithm can reasonably allocate the number of UAVs in the two networks,so that each UAV can find its own optimal or sub-optimal position,thus achieving a high system throughput.
作者 童敬辉 丁佩 花敏 周雯 TONG Jinghui;DING Pei;HUA Min;ZHOU Wen(Nanjing Forestry University,Nanjing Jiangsu 210018,China)
机构地区 南京林业大学
出处 《通信技术》 2023年第1期49-55,共7页 Communications Technology
基金 国家自然科学基金(61601275,61801225)。
关键词 无人机 轨迹优化 自适应转发 强化学习 UAV(Unmanned Aerial Vehicle) trajectory optimization adaptive forwarding reinforcement learning
  • 相关文献

参考文献9

二级参考文献66

  • 1吴钟博,易建强.无人机编队支撑网络的协同通信中继策略[J].航空学报,2020(S02):187-194. 被引量:13
  • 2白玉.四旋翼无人机的应用与发展综述[J].广西农业机械化,2020(2):7-7. 被引量:6
  • 3Pfeiffer T. Next generation mobile fronthaul architec- tures [C]//OFC 2015. Los Angeles, US: OSA, 2015 : M2J. 7.
  • 4Pizzinat A, Chanclou P, Saliou F, et al. Things you should know about fronthaul [J]. Journal of Light- wave Technology, 2015, 33(5) : 1077- 1083.
  • 5Saliou F , Simon G , Chanclou P , et al. Self - Seeded RSOAs WDM PON Field Trial for Business and Mo- bile Fronthaul Applications [C]//OFC 2015. Los An- geles, US: OSA, 2015:M2A. 2.
  • 6Ma Y, Xu Z, Lin H, et al. Demonstration of CPRI o-ver Self-seeded WDM-PON in Commercial LTE Envi- ronment. [C]//OFC 2015. Los Angeles, US: OSA, 2015 : M2J. 6.
  • 7Shibata N, Tashiro T, Kuwano S, et al. Mobile front- haul employing Ethernet-based TDM-PON system for small cells [C]//OFC 2015. Los Angeles, US:OSA, 2015: M2J. 1.
  • 8Uzawa H, Arikawa Y, Kawai K, et al. Data trans- mission scheme for enhancing effective downlink band- width in 5G mobile fronthaul with TDM-PON [C]// ECOC 2015. Valencia, Spain :IEEE, 2015: 1-3.
  • 9Cho S H, Park H, Chung H S, et al. Cost-effective next generation mobile fronthaul architecture with multi-IF carrier transmission scheme [C]//OFC 2014. San Francisco, USzOSA, 2014 1-3.
  • 10Han C, Cho S H, Chung H S, et al. Linearity im- provement of directly-modulated multi-IF-over-fibre LTE-A mobile fronthaul link using shunt diode predis- torter [C]//ECOC 2015. Valencia, Spain: IEEE, 2015: 1-3.

共引文献331

同被引文献28

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部