期刊文献+

融入法律知识的问句匹配 被引量:1

Incorporating Legal Knowledge into Question Matching
下载PDF
导出
摘要 问句匹配是问答系统的重要任务,当前方法通常采用神经网络建模两个句子的语义匹配程度.但是,在法律领域中,问句常存在文本表征稀疏、法律词的专业性较强、句子蕴含法律知识不足等问题.因此,通用领域的深度学习文本匹配模型在法律问句匹配任务上效果并不好.为了让模型更好的理解法律问句的含义、建模法律领域知识,首先构建一个法律领域知识库,在此基础上提出一种融合法律领域知识(如法律词汇和法律法条)的问句匹配模型.具体地,构建了合同纠纷、离婚、交通事故、劳动工伤、债务债权等5种法律纠纷类别下的法律词典,并且收集了相关法律法条,构建法律领域知识库.在问句匹配中,首先查询法律知识库检索问句对所对应的法律词汇和法律法条,进而通过交叉关注模型同时建模问句、法律词汇、法律法条三者之间的关联,最终实现更精准的问句匹配,在多个法律类别下的实验表明提出的方法能有效提升问句匹配性能. Question matching is an important task of question answering systems.Current methods usually use neural networks to model the semantic matching degree of two sentences.However,in the field of law,questions often have some problems,such as sparse textual representation,professional legal words,and insufficient legal knowledge contained in sentences.Therefore,the general domain deep learning text matching model is not effective in the legal question matching task.In order to make the model better understand the meaning of legal questions and model the knowledge of the legal field,this study firstly constructs a knowledge base of the legal field,and then proposes a question matching model integrating the knowledge of the legal field(such as legal words and statutes).Specifically,a legal dictionary under five categories of legal disputes has been constructed,including contract dispute,divorce,traffic accident,labor injury,debt and creditor’s right,and relevant legal articles have been collected to build a knowledge base in the legal field.In question matching,the legal knowledge base is first searched for the legal words and statutes corresponding to the question pair,and then the relationship among the question,legal words,and statutes is modeled simultaneously through the cross attention model.Finally,to achieve more accurate question matching,experiments under multiple legal categories were carried out,and the results show that the proposed method in this study can effectively improve the performance of question matching.
作者 刘权 余正涛 何世柱 刘康 高盛祥 LIU Quan;YU Zheng-Tao;HE Shi-Zhu;LIU Kang;GAO Sheng-Xiang(Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650504,China;Yunnan Key Laboratory of Artificial Intelligence(Kunming University of Science and Technology),Kunming 650504,China;National Laboratory of Pattern Recognition(Institute of Automation,Chinese Academy of Sciences),Beijing 100190,China)
出处 《软件学报》 EI CSCD 北大核心 2023年第4期1824-1836,共13页 Journal of Software
基金 国家重点研发计划(2018YFC0830105,2018YFC0830101,2018YFC0830100) 国家自然科学基金(61761026,61972186,61762056)。
关键词 法律问句匹配 法律词典 法律法条 法律领域知识库 legal question matching legal words statues legal domain knowledge base
  • 相关文献

参考文献1

二级参考文献5

  • 1许丞,彭瀚,马龙,李双峰.AskTheWeb——一个基于Web的问题回答原型系统[J].华南理工大学学报(自然科学版),2004,32(z1):11-17. 被引量:1
  • 2宋峻峰,张维明,肖卫东,唐九阳.基于本体的信息检索模型研究[J].南京大学学报(自然科学版),2005,41(2):189-197. 被引量:44
  • 3Boris Katz, Gregory Matron, Gary Borchardt, et al. External knowledge sources for question answering[A]. Proceedings of the 14th Annual Text REtrieval Conference (TREC2005)[C].Gaithersburg,US: MD, 2005. 45 - 53.
  • 4D Roussinov, J Robles. Self-Learning Web question answering system[A]. World Wide Web Conference 2004(WWW2004)[C] . New York,US: ACM,2004. 400-401.
  • 5Philip Bille. Tree edit distance, alignment distance and inclusion[J]. IT University Technical Report Series. 2003, 23(3):1 - 22.

共引文献3

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部