期刊文献+

微博热度预测研究综述

A Survey of Research on Microblog Popularity Prediction
下载PDF
导出
摘要 【目的】对现有微博热度预测研究展开多角度调研,讨论现有研究不足,展望未来发展趋势,为后续研究提供参考。【文献范围】本文整理和总结了近5年的国内外相关文献。【方法】本文首先介绍了热度预测问题的定义与热度计算方式,然后将热度预测研究方法从特征、时序和用户行为三个方面深入分析,再对热度预测问题的关键技术展开广泛调研,最后针对存在问题进行总结和展望。【结果】基于特征的热度预测方法因其定制性强被广泛使用,与深度学习和集成学习算法技术结合更是研究主流。【局限】由于各研究数据集未公开,本研究无法用统一的标准对所有算法技术的提升水平做横向对比。【结论】微博热度预测问题对于舆论监控、商业营销和内容推广等都具有一定意义,在社交媒体持续流行的时代,热度预测研究将会被继续深入推进。 [Objective]This paper is to conduct a multi-angle survey of the existing research on microblog popularity prediction,discuss the shortcomings of the existing approaches,foresee the future development trend,and provide a reference for follow-on researches.[Coverage]The paper sorts out and summarizes relevant literatures both in China and abroad in recent five years.[Methods]The paper first introduces the definition of popularity prediction and popularity calculation methods.Then the research methods of popularity prediction are analyzed from three aspects:characteristics,time sequence,and user behavior.An extensive study is conducted on the key technologies of popularity prediction.Finally,the problems of the existing methods and the prospect are summarized.[Results]Feature-based popularity prediction methods are widely used because of they are well customized.The method combining deep learning and ensemble learning is becoming the mainstream approach.[Limitations]As the dataset of the individual research is not publicly available,this study cannot make a horizontal comparison of all algorithms for the level of improvement against a unified standard.[Conclusions]Microblog popularity prediction is significant for public opinion monitoring,commercial marketing,and content promotion,etc.In the era of ever-increasing popularity of social media,the research on popularity prediction will be further promoted.
作者 李妍 何洪波 王闰强 LI Yan;HE Hongbo;WANG Runqiang(Computer Network Information Center,Chinese Academy of Sciences,Beijing 100083,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《数据与计算发展前沿》 CSCD 2023年第2期119-135,共17页 Frontiers of Data & Computing
基金 中国科学院“十四五”网络安全和信息化专项子课题“网络空间科普云矩阵建设与应用”。
关键词 热度预测 微博 机器学习 深度学习 popularity prediction microblog machine learning deep learning
  • 相关文献

参考文献17

二级参考文献98

  • 1严鸿,管燕萍.BP神经网络隐层单元数的确定方法及实例[J].控制工程,2009,16(S2):100-102. 被引量:54
  • 2王巍,李锐光,周渊,杨武.基于用户与节点规模的微博突发话题传播预测算法[J].通信学报,2013,34(S1):84-91. 被引量:5
  • 3杨国为,王守觉,闫庆旭.分式线性神经网络及其非线性逼近能力研究[J].计算机学报,2007,30(2):189-199. 被引量:19
  • 4HONG Liangjie, DAN O, DAVISON B D. Pred- icting Popular Messages in Twitter[C]// Pro- ceedings of the 20th International Conference Companion on World Wide Web: March 28- April 1, 2011. Hyderabad, India, 2011: 57-58.
  • 5SUH B, HONG L, PIROLLI P, et aL Want to be Retweeted? Large Scale Analytics on Factors Impacting Retweet in Twitter Network[C]// Proceedings of IEEE 2nd International SocialComputing Conference: August 20-22, 2020. Minneapolis, MN, USA, 2010: 177-284.
  • 6YANG Zi, GUO Jingyi, CAI Keke, et aL Under- standing Retweeting Behaviors in Social Net- works[C]// Proceedings of the 19th ACM International Conference on Information and Knowledge Management: October 26-30, 2010. Toronto, ON, Canada, 2010: 1633-1636.
  • 7LU Rong, XU Zhiheng, ZHANG Yang, et al. Trends Predicting of Topics on Twitter Based on MACD[J]. International Journal of Mode- ling and Optimization, 2012, 25 (3): 44-49.
  • 8CATALDI M, CARO L D, SCHIFANELLA C. Emerging Topic Detection on Twitter Based on Temporal and Social Terms Evaluation[C]// Proceedings of the 10th International Work- shop on Multimedia Data Mining: July 25, 2010. Washington, D.C., USA, 2010: 1-10.
  • 9LIN C X, ZHAO Bo, MEI Qiaozhu, et aL PET: a Statistical Model for Popular Events Tracking in Social Communities[C]//Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining: July 25-28, 2010. Washington, DC, USA, 203.0: 929-938.
  • 10LIN C X, MEI Qiaozhu, JIANG Yunliang, et aL Inferring the Diffusion and Evolution of Topics in Social Communities[C]. Proceedings of the 5th ACM SNA-KDD Workshop: August 11, 2011. San Diego, CA, USA, 2011: 52-58.

共引文献94

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部