期刊文献+

瓦斯涌出量自适应预测模型研究 被引量:1

Adaptive Prediction Model of Gas Emission
下载PDF
导出
摘要 为有效预防和减少煤矿瓦斯灾害,提高对回采工作面瓦斯涌出量预测的精度,提出了耦合优化的自适应粒子群算法与人工蜂群算法整合的瓦斯涌出量预测模型。通过数据预处理对原始瓦斯涌出因素进行维数约简,结合二次寻优变为建立线性方程和损失函数进一步简化计算,代入耦合优化函数实现对瓦斯涌出数据特征向量的提取,并将它作为LS-SVM的输入。应用非线性调整惯性权重H的控制策略,更新特征解的最优位置及其适应度值,对LS-SVM高斯核参数σ和正则化参数γ寻优,建立自适应耦合优化算法瓦斯涌出量预测模型。结果表明,预测值的平均相对误差仅为2.594%,相较于原优化算法和数据未处理的预测模型,实现全局搜索和局部搜寻性能的有效平衡,具备更好的泛化能力和预测准确度。 In order to effectively prevent and reduce coal mine gas disasters and improve the prediction accuracy of gas emission in mining face,a gas emission prediction model integrating coupling optimization algorithms of adaptive particle swarm optimization and artificial bee colony is proposed.Through data preprocessing,the dimension of the original gas emission factors is reduced,combined with the method of quadratic optimization into the establishment of linear equation and loss function to further simplify the calculation,and bring into the coupling optimization function to extract the feature vector of gas emission data,which is used as the input of least squares support vector machine(LS-SVM).The control strategy of nonlinear adjusting inertia weight H is applied to update the optimal position and fitness value of characteristic solution,optimize the Gaussian kernel parameterσand regularization parameterγof LS-SVM,and establish the gas emission prediction model of adaptive coupling optimization algorithm.The results show that the average relative error of the prediction value is only 2.594%.Compared with the original optimization algorithm and the prediction model without data processing,it realizes the effective balance between global search and local search performance,and has better generalization ability and prediction accuracy.
作者 杨超 周文铮 刘雨竹 YANG Chao;ZHOU Wenzheng;LIU Yuzhu(Hefei University of Technology,Hefei 230000,Anhui,China;Liaoning University of Engineering and Technology,Huludao 125000,Liaoning,China)
出处 《能源与节能》 2023年第4期11-16,共6页 Energy and Energy Conservation
基金 国家自然科学基金项目(51974151,71771111)。
关键词 矿井瓦斯 预测模型 粒子群算法 人工蜂群算法 mine gas prediction model particle swarm optimization artificial bee colony
  • 相关文献

参考文献7

二级参考文献95

共引文献84

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部