期刊文献+

基于改进U-Net的工件表面缺陷分割方法 被引量:1

Segmentation Method for Surface Defects of Industrial Components Based on Improved U-Net
下载PDF
导出
摘要 针对当前深度神经网络模型在检测小缺陷目标时性能较差的问题,提出了一种基于改进U-Net的工件表面缺陷分割方法。该方法设计了一种仅下采样3次的U型网络,在保持图像特征分辨率的同时获得足够的感受野,有效解决神经网络多次下采样造成的小目标信息丢失问题;引入Dice损失和Focal损失组成的混合损失函数,通过增强分割损失权重并抑制背景信息来提高分割效果,有效解决小缺陷目标的低概率密度问题。通过在表面缺陷数据集上的大量实验和分析,结果表明该算法能够很好地细分出缺陷区域,并在分割精度与速度之间获得平衡。 Aiming at the problem that the current deep neural networks has poor performance in detecting small surface defects,this paper proposed a segmentation method for surface defects of industrial components based on improved U-Net.In order to solve the problem of small object information loss caused by multiple down-sampling operations in common neural networks,the proposed method designed an improved U-Net adopting only three down-sampling operations,which helps to obtain sufficient receptive field while maintaining feature resolution.In addition,the proposed method introduced a hybrid loss function composed of Dice loss and Focal loss.By enhancing the segmentation loss weight and suppressing the background information,the segmentation effect was improved,and the low probability density problem of small defect target was effectively solved.Through a large number of experimental analysis on surface defect datasets,the results show that the algorithm proposed in this paper can segment the defect area well,and achieve trade-off between segmentation precision and speed.
作者 宋永献 袁敏峰 王祥祥 夏文豪 李媛媛 SONG Yong-xian;YUAN Min-feng;WANG Xiang-xiang;XIA Wen-hao;LI Yuan-yuan(School of Electronic Engineering,Jiangsu Ocean University,Lianyungang 222000,China;Jiangsu Institute of Marine Resources Development,Lianyungang 222005,China)
出处 《仪表技术与传感器》 CSCD 北大核心 2023年第3期82-87,共6页 Instrument Technique and Sensor
基金 江苏省“六大人才高峰”高层次人才培养资助项目(2019-XYDXX-243) 江苏省研究生科研与实践创新计划(KYCX20_2937)。
关键词 语义分割 缺陷检测 U型网络 表面缺陷 semantic segmentation defect detection U-Net surface defect
  • 相关文献

参考文献1

二级参考文献10

共引文献4

同被引文献16

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部