期刊文献+

一种上肢搬运助力外骨骼结构设计与运动学分析

Structural Design and Kinematic Analysis of an Upper Limb Powered Exoskeleton
下载PDF
导出
摘要 为解决传统搬运外骨骼人灵活性低、人机运动协同差的问题,文中设计了一种两连杆串联式5DOF肩部运动自适应跟随上肢搬运助力外骨骼,对其进行了运动学分析,提出了一种基于人机交互数学模型和运动空间比较法的结构尺寸优化方法,并进行了运动灵活性实验。研究结果表明:文中优化方法可以对结构参数进行有效优化,优化后串联式两连杆长度降低75%。结构人机协同性良好,人体穿戴/未穿戴外骨骼条件下肩部上提/下落、外展/内收轨迹皮尔逊相关系数分别为0.99、0.96,可实现上肢运动作有效跟随。 In order to solve the problems of low flexibility and poor human machine movement coordination in traditional exoskeleton handling,a two link series 5DOF shoulder motion adaptive tracking upper limb handling assist exoskeleton was designed,and its kinematics analysis was carried out.A structure size optimization method based on human machine interaction mathematical model and motion space comparison method was proposed,and the movement flexibility experiment was carried out.The results show that the proposed optimization method can effectively optimize the structural parameters,and the length of the two connecting rods in series can be reduced by 75%after optimization.The structure has good human machine cooperation.The Pearson correlation coefficients of shoulder lifting/falling and abduction/adduction trajectories are 0.99 and 0.96 respectively under the condition of wearing/not wearing the exoskeleton,which can effectively follow the upper limb movement.
作者 刘冠勋 尚雅层 来跃深 常宏 LIU Guanxun;SHANG Yaceng;LAI Yueshen;CHANG Hong(School of Mechatronic Engineering,Xi’an Technological University,Xi’an 710021,China;Xi’an Polaris Etek Electronic Technology Co.,Ltd.,Xi’an 710399,China)
出处 《西安工业大学学报》 CAS 2023年第2期120-126,共7页 Journal of Xi’an Technological University
基金 陕西省重点研发计划项目(2020GY-160)。
关键词 上肢外骨骼 结构设计 运动学分析 尺寸优化 Upper limb exoskeleton structural design kinematics analysis size optimization
  • 相关文献

参考文献2

二级参考文献16

  • 1芦俊,池宏勋,席文明,颜景平.双臂机器人的协作工作空间数值计算方法[J].中国机械工程,2001,12(z1):125-127. 被引量:10
  • 2马晓丽,马履中,周兆忠,蒯苏苏.3T-1R并联平台的工作空间分析与优化设计[J].中国机械工程,2006,17(18):1938-1943. 被引量:17
  • 3尼库SB.机器人导论-分析、系统及应用[M].孙富眷,朱纪洪,刘国栋,译.北京:电子工业出版,2004:12-26.
  • 4Perry J C, Rosen J, Burns S. Upper-limb powered exoskeleton design[J]. IEEE/ASME Transactions on Mechatronics, 2007, 12(4): 408-417.
  • 5Walsh C J, Endo K, Herr H. A quasi-passive leg exoskeleton for load-carrying augmentation[J]. International Journal of Hu- manoid Robotics, 2007, 4(3): 487-506.
  • 6Wu T M, Wang S Y, Chen D Z. Design of an exoskeleton for strengthening the upper limb muscle for overextension injury prevention[J]. Mechanism and Machine Theory, 2011, 46(12): 1825-1839.
  • 7Lee H D, Lee B K, Kim W S, et al. Human-robot cooperation control based on a dynamic model of an upper limb exoskeleton for human power amplification[J]. Mechatronics, 2014, 24(2): 168-176.
  • 8Carmichael M G, Liu D K. Human biomechanical model based optimal design of assistive shoulder exoskeleton[J]. Springer Tracts in Advanced Robotics, 2015, 105: 245-258.
  • 9Roman-Liu D, Tokarski T. Upper limb strength in relation to upper limb posture[J]. International Journal of Industrial Er- gonomics, 2005, 35(1): 19-31.
  • 10鲁可,曹毅,李秀娟.双臂机器人协作空间的解算[J].工程图学学报,2009,30(5):39-43. 被引量:7

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部