摘要
基于Lyapunov泛函方法,研究了一类具有时变时滞的广义半马尔可夫跳跃系统的可达集边界估计问题.先通过分片分析方法和积分不等式技术获得快慢子系统的边界,再利用半马尔可夫转移率的上下界处理转移率非常值的问题,最后以线性矩阵不等式形式给出了系统可达集边界存在的充分条件.
Based on Lyapunov functional method,the reachable set boundary estimation problem for a class of singular semi-Markovi jump systems with time-varying delays is studied.Firstly,the boundary of the fast and slow subsystem is obtained by the piecewise analysis method and integral inequality technique.Then,the upper and lower boundary of semi-Markov transfer rate is used to deal with the problem of abnormal transfer rate.Finally,the sufficient condition of the existence of the reachable set boundary of the system is given in the form of linear matrix inequality.
作者
彭春源
沈长春
PENG Chunyuan;SHEN Changchun(College of Data Science and Information Engineering,Guizhou Minzu University,Guiyang 550025,China)
出处
《吉首大学学报(自然科学版)》
CAS
2023年第2期17-23,共7页
Journal of Jishou University(Natural Sciences Edition)
基金
贵州省科技计划项目(黔科合基础-ZK[2021]一般016)。
关键词
时变时滞
广义半马尔可夫跳跃系统
可达集
线性矩阵不等式
time-varying delays
generalized semi-Markov jump systems
reachable set
linear matrix inequality