期刊文献+

无线充电磁耦合器的屏蔽层优化设计实验平台 被引量:1

Experimental Platform for Optimal Design of Shielding Layer of Wireless Charging Magnetic Coupler
下载PDF
导出
摘要 为减少无线充电系统的体积重量,增强磁耦合器的抗饱和能力,提出了一种由铁基纳米晶带材和铝板构成的复合屏蔽层,以电动汽车无线充电系统的磁耦合器为模拟对象,搭建实验平台并对所提结构进行验证。根据铁氧体与纳米晶带材的优缺点,用有限元法结合电磁场仿真软件Maxwell进行了静态参数测量实验、临近饱和厚度优化实验和效率分析实验。仿真与实验结果表明,所提出的纳米晶带材加铝板的屏蔽结构,在临近饱和状态下,体积可以减小到传统铁氧体屏蔽层的1/4,且当输出功率达到1.5 kW时,传输效率高达90.1%。所设计的实验平台具有丰富的拓展性,可广泛推广应用于电动汽车等多种无线充电领域。 In order to reduce the volume and weight of the wireless charging system and enhance the anti-saturation ability of the magnetic coupler,a composite shielding layer composed of iron-based nanocrystalline strip and aluminum plate is proposed.Taking the magnetic coupler of the wireless charging system of electric vehicle as the simulation object,an experimental platform is built and the proposed structure is verified.According to the advantages and disadvantages of ferrite and nanocrystalline strip,the static parameter measurement experiment,the near-saturation thickness optimization experiment and the efficiency analysis experiment are carried out by the finite element method combined with the electromagnetic field simulation software Maxwell.The simulation and experimental results show that the volume of the proposed shielding structure of nanocrystalline strip and aluminum plate can be reduced to 1/4 of the traditional ferrite shielding layer in the near-saturation situation,and when the output power reaches 1.5 kW,the transmission efficiency is as high as 90.1%.The experimental platform has high expansibility and can be widely used in various wireless charging fields such as electric vehicles.
作者 卢哲 王春芳 郑建芬 江加辉 陈金 LU Zhe;WANG Chunfang;ZHENG Jianfen;JIANG Jiahui;CHEN Jin(College of Electrical Engineering,Qingdao University,Qingdao 266071,Shandong,China)
出处 《实验室研究与探索》 CAS 北大核心 2023年第1期75-78,93,共5页 Research and Exploration In Laboratory
基金 国家自然科学基金项目(51877113) 教育部产学合作协同育人项目(202002109017)。
关键词 无线充电 电动汽车 磁耦合器 屏蔽层 铁基纳米晶带材 wireless charging electric vehicle magnetic coupler shielding layer iron-based nanocrystalline strip
  • 相关文献

参考文献3

二级参考文献132

  • 1毛赛君,王慧贞.非接触感应电能传输系统可分离变压器特性分析[J].电源世界,2006(5):37-39. 被引量:13
  • 2Bi Z, Song L, De Kleine R, et al. Plug-in vs. wireless charging: Life cycle energy and greenhouse gas emissions for an electric bus system[J]. Appl Energy, 2015, 146: 11-19.
  • 3Barrett J P. Electricity at the columbian exposition[M]. Columbia: Nabu Press, 1894: 168-169.
  • 4Hutin M, Leblanc M. Transformer System for Electric Railways: US Patent, No. 527 875[P].l894.
  • 5Otto D V. Power supply equipment for electrically-driven vehicle: JP Patent, No. 49 063 III[P]. 1974-06-19.
  • 6Bolger J G, Kirsten F A. Investigation of the feasibility of a dual mode electric transportation system, LBL6301[R]. Lawrence Berkeley Nat. Lab., Berkeley, CA, USA, 1977-05.
  • 7Eghtesadi M. Inductive power transfer to an electric vehicle-analytical model[C]// Vehi Tech Con/, 1990 IEEE 40th: 100-104.
  • 8Bolger J G. Urban electric transportation systems: The role of magnetic power transfer[C]// WESCONI94. Ideal Microelectronics. Con/Record. IEEE, 1994: 41-45.
  • 9Systems Control Technology Inc. Roadway powered electric vehicle project: Track construction and testing program phase 3D[R]. California PATH Program, Inst Transportation Studies, Univ California, Berkeley, CA, USA, UCB-ITS-PRR-94-07, 1994-07.
  • 10Qi Wireless Power Consortium, Seoul, Korea. Wireless Power Consortium Website[R/OL].[2013-11-12]. http:// www.wirelesspowerconsortium.com.

共引文献108

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部