期刊文献+

基于门控循环单元神经网络的大气能见度临近预报技术

Research on Nowcasting Technology of Atmospheric Visibility Based on GRU Neural Network
下载PDF
导出
摘要 针对大气能见度变化具有突变性以及复杂非线性问题,利用神经网络对复杂非线性过程拟合能力强且对映射关系变化反应速度快的特点,采用门控循环单元(GRU)神经网络为算法框架,将某省17个国家气象观测站近5年的地面能见度及相关要素数据预处理后形成本地化能见度数据集,通过该数据集对网络进行1~4 h预报时效的训练、测试与验证。实验结果显示,基于GRU神经网络的大气能见度短临预报算法其均衡平均数(F1-score)、准确率(accuracy)和风险评分(TS-score)指标明显优于长短期记忆神经网络(LSTM)、临近K指数(KNN)与支撑向量机(SVM)大气能见度短临预报算法。 Aiming at the problem of sudden change and complex nonlinearity of atmospheric visibility changes,this paper utilizes the characteristics of neural network that it has strong fitting ability to complex nonlinear processes and responds quickly to changes in the mapping relationship.It uses the gated recurrent unit(GRU)neural network as the algorithm framework,the ground visibility and related element data of 17 national meteorological observation stations in a province in the past five years are preprocessed to form a localized visibility dataset.The dataset trains,tests and validates 1 h,2 h,3 h and 4 h forecast aging time for the network.The experimental results show that the GRU neural network-based atmospheric visibility short-term forecasting algorithm has significantly better equilibrium average(F1-score),accuracy(accuracy)and risk score(TS-score)indicators than long short-term memory neural network(LSTM),nearby algorithm(KNN)and support vector machine(SVM)short-term forecasting algorithm for atmospheric visibility.
作者 魏海文 张骞 柳娜 宫玉辛 WEI Haiwen;ZHANG Qian;LIU Na;GONG Yuxin(Laboratory for Meteorological Disaster Prevention and Mitigation of Shandong,Jinan 250031,China;Shandong Meteorological Observatory,Jinan 250031,China;College of Engineering,Shandong Xiehe University,Jinan 250107,China)
出处 《实验室研究与探索》 CAS 北大核心 2023年第1期153-158,163,共7页 Research and Exploration In Laboratory
基金 山东省自然科学基金项目(ZR202102200072) 山东省气象局重点科研项目(2018sdqxz01) 山东省气象局青年科研基金项目(2020sdqn01)。
关键词 能见度 神经网络 数据集 门控循环单元 天气预报 visibility neural networks data set gated recurrence unit(GRU) weather forecast
  • 相关文献

参考文献14

二级参考文献228

共引文献248

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部