期刊文献+

斯特林/脉管复合制冷机热力特性仿真研究

Numerical Simulation Study on Thermodynamic Characteristics of Stirling/Pulse Tube Hybrid Cryocooler
下载PDF
导出
摘要 斯特林/脉管复合制冷机是一种新型低温制冷机,它克服了深低温区斯特林制冷机振动干扰和脉管制冷机制冷效率低的缺陷,能够满足空间动态载荷制冷需求,在深低温区制冷技术的空间应用中有很大潜力。利用仿真软件建立斯特林/脉管复合制冷机模型,通过调节回热器长度以及排出器相位等参数,探究复合制冷机内热力参数分布情况以及制冷机效率随排出器相位变化规律。结果表明通过主动控制排出器相位可以调节两级冷量分配。当二级回热器长度为35 mm,排出器相位约110°时,在20 K达到0.93 W制冷量;二级回热器热端质量流超前压力波23.4°,冷端质量流落后21.7°,得到合理的相位分布。 Stirling/pulse tube hybrid cryocooler is a new cryogenic refrigerator proposed.It overcomes the defects of vibration interference of Stirling refrigerator and low refrigeration efficiency of pulse tube refrigerator in deep low temperature area,and can meet the demand of dynamic load refrigeration.It has great potential in space application of refrigeration technology in deep low temperature area.The Stirling/tube hybrid cryocooler model was established by using simulation software.By adjusting the length of regenerator and the displacers phase,the distribution of thermal parameters in the hybrid cryocooler and the variation of the efficiency of the refrigerator with different displacers phase were investigated.The results show that the cooling capacity distribution of two stages can be adjusted by controlling the displacers phase actively.When the lengths of the second stage regenerator is 35 mm and the displacers phase is about 110°,the cooling capacity is 0.93 W at 20 K.The mass flow at the hot side of the second stage regenerator is 23.4°ahead of the pressure wave,and the mass flow at the cold side is 21.7°behind,and the reasonable phase distribution can be obtained.
作者 赵一帆 王小军 闫春杰 庄昌佩 ZHAO Yifan;WANG Xiaojun;YAN Chunjie;ZHUANG Changpei(Science and Technology on Vacuum Technology and Physics Laboratory,Lanzhou Institute of Physics,Lanzhou 730000,China)
出处 《真空与低温》 2023年第3期274-281,共8页 Vacuum and Cryogenics
基金 国家自然科学基金(51976086)。
关键词 复合制冷机 斯特林制冷机 热力学特性 仿真分析 hybrid cryocooler Stirling refrigerator thermodynamic characteristics simulation analysis
  • 相关文献

参考文献2

二级参考文献91

  • 1RADEBAUGH R. Cryocoolers: the state of the art and recent developments[J]. Journal of Physics: Condensed Matter, 2009, 21: 164-219.
  • 2RANDO N, LUMB D, BAVDAZ M, et al. Space science applications of cryogenic detectors [J]. Nuclear Instruments & Methods in Physics Research A, 2004, 522: 62 - 68.
  • 3ROGALSKI A. Infrared detectors: an overview [J]. Infrared Physics & Technology, 2002, 43: 187- 210.
  • 4ROGALSKI A. Recent progress in infrared detector technologies [J]. Infrared Physics & Technology,2011, 54(3):135-154.
  • 5TIMMERHAUS K D, REED R P. Cryogenic engineering: fifty years of progress [M]. New York: Springer Science-Business Media, 2006.
  • 6BHATIA R S. Review of spacecraft cryogenic coolers [J]. Journal of Spacecraft and Rockets, 2002, 39: 329 - 346.
  • 7COLLAUDIN B, RANDO N. Cryogenics in space: a review of the missions and the technologies [J]. Cryogenics, 2000, 40:797-819.
  • 8TAUBER J A. The Planck mission [J]. Advances in Space Research, 2004, 34: 491-496.
  • 9MANDOLESI M, VILLA F, VALENZIANO L. The Planck satellite[J]. Advances in Space Research, 2002, 30: 2123-2128.
  • 10TAUBER J A. The COBRAS/SAMBA mission [J]. Lecture Notes in Physics, 1995, 455 : 243 - 250.

共引文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部