期刊文献+

自组织特征映射神经网络在岩爆分级预测中的应用 被引量:1

Application of Self-Organizing Feature Map in Rockburst Classification
下载PDF
导出
摘要 岩爆是地下工程一种常见的动力灾害。为了提高岩爆预测精度和探究岩爆参数之间的潜在关系,本文借签一种自组织特征映射神经网络(SOFM),构建了岩爆烈度分级预测的无监督学习模型。结合国内外岩爆判据,选取围岩最大切应力、单轴抗压强度、单轴抗拉强度、应力系数、脆性系数及弹性能量指数6个参数作为评价指标。将46个典型的岩爆案例输入到竞争层为2×2拓扑结构的SOFM模型中进行训练。结果表明:SOFM模型具有可靠的聚类能力,其正判率为90%;与现有的有监督学习模型进行了比较,验证了本文建立的SOFM模型的优越性;最后,对SOFM聚类结果分析发现,脆性系数对轻微、中等及强岩爆的影响权重均较大,选取的6个评价指标对强岩爆和中等岩爆区分并不明显。 Rockburst is one of the common dynamic disasters in underground engineering.An unsupervised learning model of rockburst clustering is suggested with the help of a self-organizing feature map(SOFM)neural network to improve the prediction accuracy of rockburst and study the latent relation between rockburst-related evaluating indicators.Firstly,six parameters,including the maximum tangential stress,uniaxial compressive strength,uniaxial tensile strength,stress coefficient,brittleness coefficient,and elastic energy index are selected as evaluation criteria.Then,46 typical rockburst cases chosen from the literature are trained by the proposed SOFM model with its competitive layer being a 2×2 topological structure.The results suggest that the SOFM model possesses reliable clustering ability,and its positive judgment rate for the test sample is 90%.Furthermore,compared with the existing supervised learning model for rockburst prediction,the superiority of the SOFM model in this paper is verified,and some suggestions on the application of the SOFM model are given.Finally,the analysis of clustering results shows that the brittleness coefficient has a high influence on the occurrence of mild,moderate,and strong rockburst types.In addition,the distinction between strong and moderate rockburst types is not obvious by using the six evaluating parameters considered.
作者 付自国 李化 邓建辉 陈菲 王佳信 Fu Ziguo;Li Hua;Deng Jianhui;Chen Fei;Wang Jiaxin(State Key Laboratory of Hydraulics and Mountain River Engineering,Sichuan University,Chengdu 610056,P.R.China;College of Water Resources and Hydropower,Sichuan University,Chengdu 610065,P.R.China;College of Architecture and Civil Engineering,Chengdu University,Chengdu 610065,P.R.China;Faculty of Land Resource Engineering,Kunming University of Science and Technology,Kunming 650093,P.R.China)
出处 《地下空间与工程学报》 CSCD 北大核心 2023年第1期334-342,共9页 Chinese Journal of Underground Space and Engineering
基金 国家自然科学基金(42102320) 川藏工程走廊冻融滑坡现场监测及发育过程研究(2019QZKK0905-05) 中央高校基本科研业务费专项资金(2021SCU12038)。
关键词 岩爆分级 自组织特征映射 神经网络 预测 rockburst self-organizing feature mapping neural network classification prediction
  • 相关文献

参考文献13

二级参考文献169

共引文献512

同被引文献21

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部