摘要
阐述一种基于时空图卷积的太极拳动作质量评估框架,通过轻量级OpenPose姿态估计获得训练动作的骨架序列数据,然后使用时空图卷积网络(Spatial Temporal Graph Convolutional Network,STGCN)提取动作的时空特征与标准动作的特征对比,利用孪生网络学习动作的质量分数。
This paper describes a framework for evaluating the quality of Taijiquan movements based on time-space graph convolution. The skeleton sequence data of training movements are obtained through lightweight Open Pose posture estimation, and then the spatial temporal graph convolutional network(ST-GCN) is used to extract the spatiotemporal characteristics of movements and compare them with the characteristics of standard movements, and the twin network is used to learn the quality score of movements.
作者
叶倩文
肖秦琨
李梦茹
YE Qianwen;XIAO Qinkun;LI Mengru(School of Electronic and Information Engineering,Xi'an Technological University,Shaanxi 710021,China)
出处
《集成电路应用》
2023年第1期98-99,共2页
Application of IC