期刊文献+

基于大数据及人工智能的船舶能效智能优化研究综述 被引量:6

Advances in intelligent ship energy efficiency optimization with big data and AI
下载PDF
导出
摘要 船舶能效智能优化作为智能船舶的重要一环,是实现船舶智能化和绿色化发展的有效措施。船舶智能能效关键技术的研究与应用对提升船舶的智能化与绿色化水平具有重要意义。通过采用大数据和人工智能技术,可以实现船舶能效的分析预测与智能优化。面向基于大数据及人工智能的船舶能效智能优化技术,从全船用能监测分析、通航环境智能识别、船舶能效智能评估及其影响因素关联关系分析,以及船舶能效智能预测、船舶航速、航线及纵倾智能优化方面,系统地分析了基于大数据与人工智能的船舶能效智能优化技术的研究现状,剖析了大数据与人工智能在船舶能效智能优化应用中存在的问题,并对未来发展方向进行了展望,以期为船舶能效的智能优化管理提供参考,从而促进船舶的智能化与绿色化发展。 Researches on key technologies in the field of intelligent energy efficiency have been playing important role in development of intelligent Ship.This paper comprehensively analyzes the status of application of big data and artificial intelligence to ship energy optimization.The advances in following fields are highlighted:whole ship energy monitoring and analysis;perception of navigational environment;intelligent evaluation of whole ship energy efficiency and the influencing factor relation analysis;intelligent prediction of ship energy efficiency;optimization of ship speed,route,and trim.The development trend of the technology in the field is discussed.
作者 王凯 王中一 黄连忠 马冉祺 徐浩 孙培廷 WANG Kai;WANG Zhongyi;HUANG Lianzhong;MA Ranqi;XU Hao;SUN Peiting(Marine Engineering College,Dalian Maritime University,Dalian 116026,China)
出处 《中国航海》 CSCD 北大核心 2023年第1期155-162,共8页 Navigation of China
基金 国家重点研发计划项目(2022YFB4300803) 国家自然科学基金项目(52271305,52071045) 中国博士后科学基金资助项目(2021T140080) 高等学校基本科研项目(LJKQZ2021009)。
关键词 船舶工程 智能船舶 智能能效 大数据 人工智能 低碳航运 ship engineering intelligent ship intelligent energy efficiency big data artificial intelligence low-carbon shipping
  • 相关文献

参考文献6

二级参考文献37

  • 1杨超,李志强.基于主成分—神经网络相集成的多策略评价赋权方法[J].当代财经,2005(7):124-128. 被引量:4
  • 2刘伯运,欧阳光耀,常汉宝.基于神经网络和D-S证据理论的柴油机状态评估[J].车用发动机,2005(5):14-17. 被引量:8
  • 3Marine Environment Protection Committee. Amend- ments to the annex of the protocol of 1997 to amend the international convention for the prevention of pol- lution from ships, 1973, as modified by the protocol of 1978 relating thereto[R]. MEPC 62/24/Add. 1. Lon- don:IMO,2011.
  • 4SUN Xing, YAN Xinping, WU Bing, et al. Analysis on the operation energy efficiency for inland river ships[J]. Transportation Research Part D: Trans- port and Environment,2013,22:34-39.
  • 5LIN Yuhsien, FANG Mingchung, YEUNG R W. The optimization of ship weather-routing algorithm based on the composite influence of multi-dynamic elements [J]. Applied Ocean Research,2013,43 : 184-194.
  • 6HOLTROP J, MENNEN G G J. An approximate power prediction method [J]. International Ship- building Progress,1982:29(7) :166-170.
  • 7SHI W. Simulation of the influence of ship voyage profiles on exhaust emissions [C]. 2008 ASME In- ternational Mechanical Engineering Congress and Exposition. Boston, Massachusetts, USA: ASME, 2008:1-10.
  • 8BRUSSEN P. 2006. CO2-emissions of various ship types, simulated on an operational year profile [R]. TNO Report,2006-D-R0262.
  • 9陈兴权,王解先,谷川.基于主成分分析的BP神经网络在形变预测中的应用[J].大地测量与地球动力学,2008,28(3):72-76. 被引量:19
  • 10于会永,刘慧卿,张红玲,王波.基于主成分分析和BP神经网络的出砂预测模型[J].中国石油大学胜利学院学报,2008,22(3):1-3. 被引量:5

共引文献82

同被引文献65

引证文献6

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部