期刊文献+

基于卷积神经网络的红外监测系统设计 被引量:1

Design of infrared monitoring system based on convolutional neural network
下载PDF
导出
摘要 为了部队后勤物资有效、方便、统一管理,研究设计了一种用于监测物品在位状态的告警监测系统。该系统利用树莓派主板采集红外传感器检测物品在位状态的电平信号以及摄像头拍摄物品的图像数据,并将其转化为通用数据帧,通过指定源组播的方式发送至数据处理模块,最后使用基于卷积神经网络的图像识别算法判断物品的正确性,并在监测模块界面上实时显示其状态。经验证,该系统可以保证数据采集的实时性以及识别物品的准确性,实用性强。 For the effective,convenient and unified management of materials about military logistics,this paper studies and designs a monitoring system for monitoring the presence of items.The system uses the motherboard of Raspberry Pi to collect the level signal of the infrared sensor about the presence of the items and the images taken by camera of the items.Then it converts the data into the general data frame,and sends the frame to the data processing module through the source-specific multicast.Finally,the image recognition based on the convolutional neural network is used to judge the correctness of the item,and display its status in real time through the monitoring interface.It has been verified that the system can ensure the real time of data acquisition and the accuracy of identifying items.It has strong practicability.
作者 焦翔 赵文策 蒯亮 周淦 白永强 任彦程 Jiao Xiang;Zhao Wence;Kuai Liang;Zhou Gan;Bai Yongqiang;Ren Yancheng(The Sixth Research Institute of China Electronics Corporation,Beijing 102209,China;Taiyuan Satellite Launch Center,Taiyuan 030027,China)
出处 《电子技术应用》 2023年第4期83-87,共5页 Application of Electronic Technique
关键词 树莓派 红外检测 状态监测 图像识别 卷积神经网络 Raspberry Pi infrared detection condition monitoring image recognition convolutional neural network
  • 相关文献

参考文献13

二级参考文献154

  • 1马鹏,樊艳芳.基于深度迁移学习的小样本智能变电站电力设备部件检测[J].电网技术,2020,44(3):1148-1159. 被引量:86
  • 2林文,蒋泽军.基于IGMPv3和PIM-SSM协议的源特定组播技术的研究[J].科学技术与工程,2007,7(8):1608-1612. 被引量:3
  • 3LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition [J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
  • 4HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets [J]. Neural Computation, 2006, 18(7): 1527-1554.
  • 5LEE H, GROSSE R, RANGANATH R, et al. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations [C]// ICML '09: Proceedings of the 26th Annual International Conference on Machine Learning. New York: ACM, 2009: 609-616.
  • 6HUANG G B, LEE H, ERIK G. Learning hierarchical representations for face verification with convolutional deep belief networks [C]// CVPR '12: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2012: 2518-2525.
  • 7KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [C]// Proceedings of Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2012: 1106-1114.
  • 8GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2014: 580-587.
  • 9LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2015: 3431-3440.
  • 10SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [EB/OL]. [2015-11-04]. http://www.robots.ox.ac.uk:5000/~vgg/publications/2015/Simonyan15/simonyan15.pdf.

共引文献2380

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部