摘要
利用ABAQUS有限元软件对薄壁不锈钢圆管轴压柱的轴压稳定性能进行了数值模拟,并考察了材料性能参数、材料各向异性、初始几何缺陷、径厚比、长细比等因素的影响。分析结果表明:材料各向异性和初始局部缺陷的取值对构件轴压稳定性能影响较小,可以忽略;初始整体缺陷取值对构件轴压稳定性能影响较大,有限元模型中取构件长度的1/2000可较为准确地模拟试验结果;材料性能参数、径厚比和长细比对构件轴压稳定性能影响较大。通过对不同径厚比构件的分析,提出了防止构件发生局部屈曲的容许径厚比建议公式;通过对不同正则化长细比构件的分析,提出了构件发生整体弯曲的临界正则化长细比建议公式,公式计算结果与有限元分析结果吻合良好,可为不锈钢管柱的工程设计提供参考。
The thin-walled stainless steel circular hollow section(CHS)columns under axial compression were numerically simulated using ABAQUS finite element software.The effects of material behavior,anisotropy,initial geometric imperfections,radiusthickness ratio and slenderness ratio were investigated.The analysis results show that anisotropy and initial local imperfections have little effect on the mechanical properties of the columns.The initial overall imperfections have a large influence on the mechanical properties of the columns,and the 1/2000 of the column length in the finite element model can accurately simulate the test results.Material behavior,diameter-thickness ratio and slenderness ratio have a large influence on the mechanical properties of the columns.Based on the analysis of the columns with different diameterthickness ratios,a formula of allowable diameter-thickness ratio is proposed for preventing local buckling of the columns.Through the analysis of the columns with different regularized slenderness ratios,a formula of critical regularized slenderness ratio of the columns is proposed.The calculation results of the formula are in a good agreement with the results of finite element analysis,which can provide a reference for the engineering design of stainless steel tubular columns.
作者
朱浩川
许友武
姚谏
ZHU Haochuan;XU Youwu;YAO Jian(The Architectural Design&.Research Institute of Zhejiang University Co.,Ltd.,Hangzhou 310028,China;College of Civil Engineering and Architecture,Quzhou University,Quzhou 324000,China)
出处
《建筑钢结构进展》
CSCD
北大核心
2023年第3期27-38,共12页
Progress in Steel Building Structures
基金
浙江省自然科学基金(LY18E080014)。
关键词
不锈钢圆管柱
轴压
稳定性能
稳定系数
长细比
径厚比
stainless steel circular hollow section column
axial compression
mechanical property
stability factor
slenderness ratio
diameter-thickness ratio