摘要
设(M_(1),F_(1))和(M_(2),F_(2))是两个强凸的复Finsler流形,λ_(1)和λ_(2)是乘积流形M=M_(1)×M_(2)上的光滑实值函数,双挠积复Finsler流形(M1×(λ_(1,)λ_(2))M_(2),F)是在乘积流形上赋予了复Finsler度量F^(2)=λ_(1)^(2)F_(1)^(2)+λ_(2)^(2)F_(2)^(2)的复Finsler流形.本文给出了双挠积复Finsler流形是局部对偶平坦流形的充要条件.
Let(M_(1),F_(1))and(M_(2),F_(2))be two strongly convex complex Finsler manifolds.The doubly twisted product complex Finsler manifold(MiX(A1,Aa)M2,F)is the product manifold M1×M2 endowed with the twisted product complex Finsler metric F2=F1+2F2,where A1 and X2 are positive smooth functions on M_(1)×M_(2).In this paper,we obtain the necessary and sufficient conditions that the doubly twisted product complex Finsler manifold(Mi x(A1,a)M2,F)is a locally dually flat manifold.
作者
肖维
何勇
栗嘉慧
邓香香
XIAO Wei;HE Yong;LI Jiahui;DENG Xiangxiang(School of Mathematical Sciences,Xinjiang Normal University,Urumqi,Xinjiang,830017,P.R.China)
出处
《数学进展》
CSCD
北大核心
2023年第2期371-376,共6页
Advances in Mathematics(China)
基金
国家自然科学基金(Nos.12261088,11761069)。