期刊文献+

多维SUPG格式不可压流动高精度算法研究

Study on the High-Precision Algorithm of Incompressible Flows With Multidimensional Streamline Upwind Petrov-Galerkin Format
下载PDF
导出
摘要 在传统流线迎风Petrov-Galerkin (SUPG)有限元法基础上,通过对稳定因子关键参数进行分析,提出了基于流向投影的最优特征高度参数确定方法,同时针对不可压流动引入变量分裂算法,发展了一种可用于高雷诺数不可压流动计算的高精度稳定化SUPG方法.详细地给出了三角形单元基于流向的最优特征高度确定方法的分析过程,并给出了基于分裂算法的有限元计算步骤和公式.采用该方法对典型的方腔拖曳、圆柱绕流流动问题进行了分析,在网格较稀疏,且雷诺数较大的情况下,依然可以得到稳定的计算结果,从而验证了该方法的稳定性、有效性,对实际工程应用具有积极的意义. Based on traditional streamline upwind Petrov-Galerkin(SUPG)FEM,by analyzing the key parameters of the stability factor,a new way for calculating the optimal characteristic height parameter through flow-direction-based projection(FDBP)is proposed.By introducing variable splitting algorithm,a high-precision SUPG algorithm with triangular element for incompressible flows with high Reynolds number is developed.The analysis process of the FDBP is given,as well as details of the finite element calculation steps and formula.Problems of lid-driven cavity flow and flow past a circular cylinder are analyzed by FDBP,the stable results can be obtained in the case of sparse grid and high Reynolds number,which proves its stability,accuracy and applicability.
作者 韩向科 苏波 郭彤 宋凯 HAN Xiangke;SU Bo;GUO Tong;SONG Kai(Shanghai Ershiye Construction Co.,Ltd.,Shanghai 201999,China;Faculty of Civil Engineering and Mechanics,Jiangsu University,Zhenjiang 212013,Jiangsu,China;School of Civil Engineering,Southeast University,Nanjing 211189,Jiangsu,China)
出处 《力学季刊》 CAS CSCD 北大核心 2023年第1期113-121,共9页 Chinese Quarterly of Mechanics
基金 国家自然科学基金(51108210) 江苏省博士后基金(1301048C)。
关键词 不可压流动 流线迎风Petrov-Galerkin 分裂算法 最优参数 incompressible flows SUPG variable splitting algorithm optimal parameter
  • 相关文献

参考文献1

二级参考文献15

  • 1钱若军,董石麟,袁行飞.流固耦合理论研究进展[J].空间结构,2008,14(1):3-15. 被引量:89
  • 2HUANG Cheng, ZHOU Dai, BAO Yan, et al. A sta- bilized finite element technique and its application for turbulent flow with high Reynolds number [J]. Wind and Structures, 9.011, 14(5): 465-480.
  • 3ZIENKIEWICZ O C, TAYLOR R L. The finite ele- ment method for fluid dynamics [M]. 5th ed. Amster- dam, The Netherlands: Elsevier, 2000.
  • 4KOHNO H, BATHE K J. A nine-node quadrilateral FCBI element for incompressible fluid flows [J]. Com- munications in Numerical Methods in Engineering, 2006, 22(8): 917-931.
  • 5BROOKS A N, HUGHES T J R. Streamline upwind/ Petrov-Galerkin formulation for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations [J]. Computer Methods in Applied Mechanics and Engineering, 1982, 32 (1/2/ 3) : 199-259.
  • 6JAMESON A. Time dependent calculation using mul- tigrid with applications to unsteady flows past airfoils and wings [C]//Proceedings of AIAA 10th Computa- tional Fluid Dynamics Conference. Reston, VA, USA.- AIAA, 1991: 1-8.
  • 7NITHIARASU P, CODINA R, ZIENKIEWICZ O C. The characteristic-based split (CBS) scheme: a unified approach to fluid dynamics [J]. Numerical Methods in Engineering, 2006, 66(10): 1514-1546.
  • 8ADINA R&D Inc. ADINA CFD^FSI: theory and mod- eling guide [ M]. Watertown, MA, USA: ADINA R&D Inc. , 2005.
  • 9DONEA J, HUERTA A. Finite element methods for flow problems [M]. London, UK: John Wiley & Sons, 2003: 92-93.
  • 10GRESHO P M, SANI R L. Incompressible flow and the finite element method [M]. New York, USA:John Wiley & Sons, 2000: 302.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部