摘要
边缘学习旨在实现云-边-端协同的机器学习模型训练和预测,天然具有一定隐私保护能力。但是,边缘学习过程面临新的安全与隐私泄露风险。为此,本文从边缘学习的概念出发,重点围绕边缘学习安全与隐私泄露风险及其隐私计算架构、关键技术、未来方向展开论述。
Edge learning is mainly applicable in collaborativemachine learning and model prediction scenarios that involve cloud-edge-end architecture.This distributed nature of edge learning naturally provides a certain level of privacy protection.However,collaborative learning faces some new privacy risks that must be addressed.Therefore,this paper explores the concept of edge learning and focuses on the security and privacy disclosure risks associated with it.Additionally,the paper delves into the technical architecture,key technologies,and future directions of privacy computing in edge learning.
出处
《自动化博览》
2023年第2期19-24,共6页
Automation Panorama1
关键词
边缘学习
隐私计算
联邦学习
安全多方计算
可信执行环境
Edge learning
Privacy computing
Federated learning
Secure multi-party computing
Trusted execution environment