摘要
研究二阶半正问题{-u"(t)=λh(t)f(u(t)),t∈(0,1),αμ(0)-b(μ'(0))μ'(0)=0,c(μ(1))μ(1)+8μ'(1)=0正解的存在性,其中λ为正参数,α,δ>0为常数,b,c∈C([0,∞),[0,∞)),h∈C([0,1],[0,∈)),f∈C([0,∞),R),f>-M(M>0)且f∞:=lim_(x→∞)f(x)/x=∞。主要定理的证明基于Krasnoselskii不动点定理。
The existence of positive solutions for the second order semipositone problem{-u"(t)=λh(t)f(u(t)),t∈(0,1),αμ(0)-b(μ'(0))μ'(0)=0,c(μ(1))μ(1)+8μ'(1)=0 is studied,where^is a positive parameter,α,δ>0 are constants b,c∈C([0,∞),[0,∞)),h∈C([0,1],[0,∈)),f∈C([0,∞),R),f>-M(M>0)and f∞:=lim_(x→∞)f(x)/x=∞.The proof of the main theorems is based on fixed point theorem of Krasnoselskii.
作者
石轩荣
SHI Xuan-rong(College of Mathematics and Statistics,Northwest Normal University,Lanzhou 730070,Gansu,China)
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2023年第4期89-96,共8页
Journal of Shandong University(Natural Science)
基金
国家自然科学基金资助项目(12061064)。