期刊文献+

具有不定位势Kirchhoff型Schrödinger-Bopp-Podolsky系统解的存在性

Existence of solutions for the Kirchhoff type Schrödinger-Bopp-Podolsky system with indefinite potentials
原文传递
导出
摘要 研究Kirchhoff型Schrödinger-Bopp-Podolsky系统,考虑位势函数V不定的情况。此时Schrödinger算子-△+V具有有限维负空间。利用Morse理论,得到Kirchhoff型Schrödinger-Bopp-Podolsky系统非平凡解的存在性。 This paper is devoted to the Kirchhoff type Schrödinger-Bopp-Podolsky system.It considers the case where the potential Vis indefinite so that the Schrödinger operator-A+V possesses a finite-dimensional negative space.The authors obtain nontrivial solutions for the Kirchhoff type Schrödinger-Bopp-Podolsky system via Morse theory.
作者 唐丽琴 王莉 王军 TANG Li-qin;WANG Li;WANG Jun(School of Science,East China Jiaotong University,Nanchang 330013,Jiangxi,China)
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2023年第4期97-103,110,共8页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(12161038) 江西省自然科学基金资助项目(GJJ212204)。
关键词 Kirchhoff型Schrödinger-Bopp-Podolsky系统 Morse理论 不定位势 临界群 Kirchhoff type Schrödinger-Bopp-Podolsky system Morse theory indefinite potential critical point
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部