期刊文献+

基于Tsallis熵的两点法确定明渠断面流速分布及数值模拟验证

Cross-section Velocity Distribution Determination by Two-point Method Based on Tsallis Entropy and Numerical Simulation Verification
下载PDF
导出
摘要 在现代农业灌溉中,为了得到明渠断面的流量,首先需要确定明渠断面的流速分布,然而以往的流速分布公式大都不够准确,无法满足精准灌溉的需求,针对这一难题,在基于Tsallis熵推导流速分布的基础上,对熵参数重新推导,提出新的熵参数,进一步简化了流速分布公式,提出两点法确定断面流速分布的研究方法,并结合实测资料和数值模拟软件进行验证。结果表明:通过测量水面下断面中心线上一点流速值u_(c)与相同水深下另一点的流速值u_(z),可计算出流速分布公式中两个未知参数G_(p)、m_(p),确定该水深位置横向流速分布公式,再通过已知参数计算出断面最大流速u_(max),并确定断面中心线流速分布公式。与以往的流速分布公式相比,两点法更加简便,能够较好的应用在工程实际中,具有较高的理论意义和实用价值。 In modern agricultural irrigation,in order to obtain the flow rate of the open channel section,it is necessary to determine the velocity distribution of the open channel section first.However,most of the previous velocity distribution formulas are not accurate enough to meet the needs of precision irrigation.In this study,to solve this problem,on the basis of deducing the velocity distribution based on Tsallis entropy,the entropy parameters were rededuced,a new entropy parameter was proposed,the velocity distribution formula was further,and a two-point method was proposed to determine the velocity distribution of the section.The research method was verified by the measured data and numerical simulation software.The results show that:by measuring the velocity value u_(c) at one point on the center line of the section under the water surface and the velocity value u_(z) at another point under the same water depth,the two unknown parameters G_(p) and m_(p) in the velocity distribution formula can be calculated,and the transverse velocity distribution formula at the water depth position can be determined.Then the maximum velocity u_(max) of the section is calculated by the known parameters,and the velocity distribution formula of the center line of the section is determined.Compared with the previous velocity distribution formula,the two-point method is simpler.This formula can be better applied in engineering practice,and has high theoretical significance and practical value.
作者 唐皓东 周义仁 TANG Hao-dong;ZHOU Yi-ren(College of Water Resources Science and Engineering,Taiyuan University of Technology,Taiyuan 030024,China)
出处 《节水灌溉》 北大核心 2023年第4期103-109,共7页 Water Saving Irrigation
基金 山西省自然科学基金面上项目(201701D121108)。
关键词 TSALLIS熵 信息熵 流速分布 数值模拟 明渠 两点法 Tsallis entropy information entropy velocity distribution numerical simulation open channel two-point method
  • 相关文献

参考文献3

二级参考文献15

  • 1王殿常,王兴奎,李丹勋.明渠时均流速分布公式对比及影响因素分析[J].泥沙研究,1998,23(3):86-90. 被引量:16
  • 2窦国仁.明渠和管道紊流结构[J].中国科学,1980,(11):1115-1115.
  • 3.明渠水流测量[M].北京:中国科学技术出版社,1992..
  • 4吴持恭.水力学[M].北京:高等教育出版社,1979.369.
  • 5章梓雄,董曾南.黏性流体力学[M].北京:清华大学出版社,1998.
  • 6SARMA K V N, LAKSHMINARAYANA L, RAO N S L. Velocity distribution in smooth rectangular open channels [J]. Journal of Hydraulic Engineering, 1983, 109(2) : 270-289.
  • 7COLEMAN N L, ALONSO C V. Two-dimentional flow over rough surface [J]. Journal of Hydraulic Engineering, 1983, 109(2): 175-188.
  • 8CHIU C L, CHIOU J D. Structure of 3-D flow in rectangular open channels [J]. Journal of Hydraulic Engineering, 1986, 112(11): 1050-1068.
  • 9陈森林,肖舸,赵云发,张继顺,王文军.河道断面流速分布函数研究[J].水利学报,1999,30(4):70-74. 被引量:16
  • 10Jing YAN,Hong-wu TANG,Yang XIAO,Kai-jie LI,Zhi-Jun TIAN.Experimental study on influence of boundary on location of maximum velocity in open channel flows[J].Water Science and Engineering,2011,4(2):185-191. 被引量:5

共引文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部