期刊文献+

基于Attention-ConvLSTM的出租车需求预测研究

Taxi Demand Prediction Based on AttentionConvLSTM
下载PDF
导出
摘要 准确合理的出租车需求预测能平衡乘客出行需要且缓解城市交通拥堵,但出租车需求是动态的,它会随着时间的周期性和空间的相关性变化而变化。使用神经网络的出租车需求预测模型广受关注,但目前大部分模型对需求数据的时空间特征提取有效性不足,缺乏筛选数据特征的能力,使得预测结果不够贴合现实情况。对此,本文提出AttConvLSTM预测模型。首先通过k-means聚类和Granger因果关系检验寻找与检验时空相关性,再结合影响需求的气候和节假日等外部因素,运用卷积长短期记忆网络(ConvLSTM)融合注意力机制捕获及评估时空间特征,对特征进行选择性注意,从而提高预测结果的精度与可靠性。最终选取纽约市出租车需求数据进行实验,结果表明该模型相比多种知名基线模型表现出更高的准确度和稳定性。 Accurate and reasonable taxi demand forecasting can balance passenger travel needs and reduce urban traffic congestion,but taxi demand is dynamic and changes with time cycles and spatial correlations.Taxi demand forecasting models using neural networks are widely popular,but most of the current models are not effective enough in extracting the spatio-temporal features of the demand data and lack the ability to filter the data features,making the forecasting results not close to the real situation.In response,this paper proposes the Att-ConvLSTM prediction model.First,find and test spatio-temporal correlation through kmeans clustering and Granger causality test,then combine external factors such as climate and holidays that affect demand,use convolutional long and short-term memory network(ConvLSTM)to fuse attention mechanism to capture and evaluate spatiotemporal features,and selectively pay attention to features,so as to improve the accuracy and reliability of prediction results.New York City taxi demand data were selected for the experiment,and the results show that the model exhibits higher accuracy and stability compared to a variety of well-known baseline models.
作者 吴迪 倪静 Di Wu;Jing Ni(Business School,University of Shanghai for Science&Technology,Shanghai,200093,China)
出处 《管理科学与研究(中英文版)》 2023年第4期37-49,共13页 Management Science and Research
关键词 出租车需求预测 神经网络 卷积长短期记忆网络 注意力机制 GRANGER因果关系检验 K-MEANS聚类 Taxi Demand Prediction Neural Network Convolutional Long and Short-Term Memory Networks Attentional Mechanisms Granger Causality Test K-Means Clustering
  • 相关文献

参考文献3

二级参考文献29

  • 1Zhang D,Guo B,Yu Z. The emergence of social and community intelligence[J].Computer,2011,(07):21-28.
  • 2Ratti C,Pulselli R M,Willians S,Frenchman D. Mobile Landscapes:using location data from cell phonnes for urban analysis[J].Envrionment and Planning B:Planning and Design,2006,(05):727-748.
  • 3Zhu H,Zhu Y,Li M,Ni L. SEER:metropolitan-scale traffic perception based on lossy sensory data[A].2009.217-225.
  • 4Calabrese F,Pereira F C,Lorenzo G D,Liu L,Ratti C. The geography of taste:analyzing cell-phone mobility and social[A].2010.22-37.
  • 5Girardin F,Blat J,Calabrese F,Fiote F,Ratti C. Digital Footprinting:uncovering tourists with user-generated content[J].IEEE Pervasive Computing,2008,(04):36-43.
  • 6Ahas R,Aasa A,Silm S,Tiru M. Mobile positioning data in tourism studies and monitoring:case study in Tartu,Estonia[A].2007.119-128.
  • 7Girardin F,Vaccari A,Gerber A,Biderman A Ratti C. Quantifying urban auractiveness from the distribution and density of digital footprints[J].International Journal of Spatial Data Infrastructures Research,2009.175-200.
  • 8González M,Hidalgo C,Barabasi A. Understanding individual human mobility patterns[J].Nature,2008.779-782.
  • 9McNamara L,Mascolo C,Capra L. Media sharing based on collocation prediction in urban transport[A].2008.58-69.
  • 10Froehlich J,Neumann J,Oliver N. Sensing and predicting the pulse of the city through shared bicycling[A].2009.1420-1426.

共引文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部