期刊文献+

基于三维姿态拟合的非接触式红鳍东方鲀全长精准估算方法 被引量:1

Non-contact method for the accurate estimation of the full-length of Takifugu rubripes based on 3D pose fitting
下载PDF
导出
摘要 鱼类生物量无损测算是智能化水产养殖的重要环节,如何实现鱼体全长精准估算是该环节稳定运行的重要前提。该研究以红鳍东方鲀为对象,提出了一种鱼体全长精准估算方法,可在非接触情况下对自由游动的红鳍东方鲀进行精准的体长估算。首先,利用双目立体视觉技术对原始图像进行校正和立体匹配获得深度图像,并通过SOLOv2模型进行鱼体分割;然后,通过自主设计的独立分类器对图像进行高效分类,自动获取可用于全长估算的鱼类侧面图像,其分类准确率达95.3%;最后,耦合图像平面特征和深度信息,对鱼类进行三维姿态拟合,实现鱼类全长精准估算。结果表明,该方法全长估算的平均相对误差为2.67%,标准差为9.45%,且全长估算值与质量表现出良好相关性(R^(2)=0.88)。该研究将为鱼类生物量无损测算提供关键技术支撑,对水产养殖的信息化管理、鱼类生长状况评估、投饵控制等具有重要意义。 Non-destructive measurement of fish biomass is the key to achieving intelligent farming in aquaculture.Among them,the prerequisite can be the accurate estimation of the full length of fish.In this study,an accurate estimation was proposed for the full length of fish using 3D pose fitting.A summary was given on the previous estimations of fish length in recent years.Taking the Takifugu rubripes as the research object,the accurate estimation of the body length was realized in a non-contact situation.Firstly,the original image was corrected and stereo matched to obtain the depth image using binocular stereoscopic vision technology,and then the foreground segmentation of the fish body was performed by SOLOV2.Secondly,an independent classifier was designed to automatically acquire the fish side images for the full-length estimation.A comparison was made on the classification effects of three classifiers(SVM,Resnet18 and ResNet34).Finally,the ResNet34 network was selected as the image classification with the highest priority of accuracy,while maintaining a short inference time for the single image.As such,the accuracy reached 95.3%,and the inference time was 0.040 s in the NVIDIA Geforce RTX 3090 SLI.Thus,the images were efficiently classified to improve the data quality,where the 2135 images of 121 fish were automatically filtered for the subsequent full-length estimation.The image data was fully used to couple the plane features and depth information of the fish images.3D pose fitting of fish in the x-y and x-z planes was also performed to achieve the full-length estimation of fish.The results showed that the linearity fit was good with R^(2)of 0.90,indicating better linearity between the manually measured and the estimated total length.When the estimated total length and body weight were fitted with the multiplicative power formula,the fit was good with an R^(2)of 0.88,indicating a better correlation.The error analysis showed that the mean absolute error of the estimated full length was about-10.5mm,the mean relative error was 2.67%,the standard deviation of accuracy was 9.45%,and the relative error of the single full-length prediction data fell in the range of-6.68%to 12.12%,demonstrating a higher accuracy and stability.The estimated full length was also taken with the manually measured length as the exact value.Only image data was as the input,where the biological characteristics(such as body size and pigmentation)were the primary judgment factors for the applicability.The length was estimated during fish entering the developmental stage,where the biological characteristics were similar to those of adult fish.Meanwhile,the applicability range of this model for Takifugu rubripes was at least 187-650 mm full-length,according to the growth process and the applicability range of the multiplicative power formula in the existing studies.This finding can provide important technical support for the non-contact fish biomass estimation in the aquaculture process,particularly for the information management,fish growth condition assessment and baiting control of aquaculture.
作者 周佳龙 季柏民 倪伟强 赵建 朱松明 叶章颖 ZHOU Jialong;JI Baimin;NI Weiqiang;ZHAO Jian;ZHU Songming;YE Zhangying(College of Biosystems Engineering and Food Science,Zhejiang University,Hangzhou 310058,China;Ocean Academy,Zhejiang University,Zhoushan 316021,China)
出处 《农业工程学报》 EI CAS CSCD 北大核心 2023年第4期154-161,共8页 Transactions of the Chinese Society of Agricultural Engineering
基金 国家重点研发计划项目(2019YFD0900500) 国家自然科学基金项目(31902359、32173025)。
关键词 机器视觉 三维 红鳍东方鲀 姿态拟合 全长精准估算 非接触式 computer vision three-dimensional Takifugu rubripes pose fitting accurate estimation of full length non-contact
  • 相关文献

参考文献6

二级参考文献63

共引文献147

同被引文献31

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部