期刊文献+

基于DT-SVM的宿舍用电异常数据监测平台设计

The Design of DT-SVM Based Dormitory Electricity Abnormal Data Monitoring Platform
下载PDF
导出
摘要 随着高职扩招,学生人数呈几何级增长,宿舍用电安全显得尤为重要。然而目前宿舍用电异常数据监测精度速度普遍不高。基于此设计了基于DT-SVM的异常数据监测平台。该平台利用智能电表进行宿舍用电数据的采集和控制管理,选择DT(决策树)和SVM(支持向量机)的多级分类算法框架实现用电异常数据预测监控。经实际部署安装测试,该平台功能丰富,较好地实现了宿舍用电异常预警、有效监控等功能。 With the expansion of higher education,the number of students is increasing geometrically,and the safety of dormitory electricity is especially important.However,the current dormitory electricity abnormal data monitoring accuracy and speed are generally not high.Based on this,a DT-SVM-based abnormal data monitoring platform is designed.The platform uses smart meters for dormitory electricity consumption data collection and control management,and selects the multi-level classification algorithm framework of DT(Decision Tree)and SVM(Support Vector Machine)to realize electricity consumption anomaly data prediction monitoring.After actual deployment and installation tests,the platform has rich functions and can better realize the functions such as electricity consumption abnormal warning and effective monitoring.
作者 石亚勇 姚正军 董学枢 SHI Ya-yong;YAO Zheng-jun;DONG Xue-shu(Yangzhou Polytechnic Institute,Yangzhou,Jiangsu 225000,China;Tongda College of Nanjing University of Posts and Telecommunications,Yangzhou,Jiangsu 225000,China)
出处 《邢台职业技术学院学报》 2023年第1期64-72,共9页 Journal of Xingtai Polytechnic College
基金 2021年企业横向课题--基于大数据的宿舍智能电表误差分析与诊断以及应用研究,课题编号:2021321001000397。
关键词 智能电表 异常检测 数据分析 决策树-支持向量机 smart electricity meter anomaly detection data analysis decision tree-support vector machine
  • 相关文献

参考文献8

二级参考文献56

共引文献368

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部