期刊文献+

用人工神经网络方法计算太阳光谱辐照度分布 被引量:1

Simulation of solar spectral irradiance distribution with artificial neural network
下载PDF
导出
摘要 针对传统太阳光谱辐照度分布计算模型计算速度慢,需要大量气象参数等问题,提出了一种基于人工神经网络(ANN)算法模型计算特定气象参数下的太阳光谱辐照度分布的方法。首先将数据集通过Mini-Batch-Kmeans算法聚类并标签化,利用Python平台搭建ANN算法模型并对数据集进行训练,从而获得该气象条件下的太阳光谱辐照度分布。结果表明,相对于其他机器学习算法模型,提出的ANN算法具有更好的误差评估参数表现以及更稳定的预测性能。此预测模型可运用于光伏器件的输出性能参数的计算,为光伏组件实际应用中预测发电量输出和性能评估提供了便捷工具。 Conventional simulation method for solar spectral irradiance distribution needs a large number of parameters and long time for calculation.To simplify the simulation process and adapt to practical application,this paper proposed an artificial neural network(ANN)algorithm model to calculate the solar spectral irradiance with meteorological parameters.The input data was first clustered and labelled by the Mini-Batch-Kmeans algorithm,an ANN algorithm model was built using a Python platform and the data was trained,then the solar spectrum irradiance distribution could be output through repeatedly training.The results show that the ANN algorithm proposed in this paper has good error evaluation and more stable prediction performance.This prediction model can be applied to the calculation of the output performance of real photovoltaic system,providing a convenient tool for the performance evaluation and prediction of photovoltaic modules in further applications.
作者 马志新 张雅婷 刘文柱 韩安军 刘正新 MAZhixin;ZHANG Yating;LIU Wenzhu;HAN Anjun;LIU Zhengxin(Shanghai Institute of Microsystems and Information Technology,Chinese Academy of Sciences,Shanghai 200050,China;School of Physical Science and Technology,Shanghai Tech University,Shanghai 201210,China;Research Center for Materials and Optoelectronics,University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《电源技术》 CAS 北大核心 2023年第4期518-522,共5页 Chinese Journal of Power Sources
基金 上海市科委南极行动专项(19dz1207602,20dz1207100)。
关键词 人工神经网络 聚类算法 太阳光辐照强度 太阳光谱辐照度分布 气象参数 artificial neural network clustering algorithm solar irradiance solar spectral irradiance distribution meteorological parameters
  • 相关文献

参考文献2

二级参考文献2

共引文献24

同被引文献18

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部