期刊文献+

基于多策略粒子群优化RBF的云资源预测模型 被引量:1

Cloud resource prediction model based on multi-strategy particle swarm optimization RBF
下载PDF
导出
摘要 针对云计算资源利用率低等问题,构建基于多策略粒子群优化RBF神经网络的云资源预测模型(MPSO-RBF)。采用改进的粒子群算法对RBF神经网络参数进行优化,避免随机初始化参数引起的预测精度低等问题;对于粒子群容易陷入局部最优解等问题,采用动态惯性权重、自适应学习因子和变异粒子位置3种策略对粒子群进行改进,提高算法的寻优能力。基于云计算资源负载数据,将该模型与BP、RBF和PSO-RBF模型进行对比实验,验证了该模型具有良好的性能。 Aiming at the problem of low utilization of cloud computing resources,a cloud resource prediction model based on multi-strategy particle swarm optimization RBF neural network(MPSO-RBF)was constructed.The improved particle swarm optimization algorithm was used to optimize the parameters of RBF neural network,which effectively avoided the problem of low prediction accuracy caused by random initialization parameters.For the problem that particle swarm optimization is easy to fall into local optimal solution,three strategies of dynamic inertia weight,adaptive learning factor and mutation particle position were used to improve the particle swarm optimization,which improved the optimization ability of the algorithm.Based on cloud computing resource load data,the model was compared with BP,RBF and PSO-RBF models to verify the better performance of the proposed model.
作者 杨迪 刘思源 王鹏 杨华民 RBF YANG Di;LIU Si-yuan;WANG Peng;YANG Hua-min(School of Computer Science and Technology,Changchun University of Science and Technology,Changchun 130000,China)
出处 《计算机工程与设计》 北大核心 2023年第4期1073-1080,共8页 Computer Engineering and Design
基金 中央引导地方科技发展基金项目(202002038JC)。
关键词 云计算 负载资源预测 粒子群算法 径向基神经网络 柯西分布 学习因子 惯性权重 cloud computing load resources prediction particle swarm optimization radial basis function neural network Cauchy distribution learning factor inertia weight
  • 相关文献

参考文献15

二级参考文献111

  • 1张利彪,周春光,马铭,刘小华.基于粒子群算法求解多目标优化问题[J].计算机研究与发展,2004,41(7):1286-1291. 被引量:225
  • 2陈秀真,郑庆华,管晓宏,林晨光.层次化网络安全威胁态势量化评估方法[J].软件学报,2006,17(4):885-897. 被引量:342
  • 3Qian Ling, Luo Zhiguo, Du Yujian, et al. Cloud computing: an overview[J]. Lecture Notes in Com- puter Science, 2009, 5931(1): 626-631.
  • 4Wu Hesheng, Wang Chongjun, Xie Junyuan. Tera Scaler ELB-an algorithm of prediction-based elastic load balancing resource management in cloud compu- ting[C]//Proc of International Conference on Ad- vanced Information Networking and Applications Workshops. Piscatway: IEEE, 2013:649-654.
  • 5Hu Dandan, Chen Ningjiang, Dong Shilong, et al. A user preference and service time mix-aware resource provisioning trategy for multi-tier cloud services [C]//Proc of AASRI Conference on Parallel and Dis- tributed Computing Systems. Amsterdam.. Elsevier BV, 2013:235-242.
  • 6Xiao Zhen, Song Weijia, Chen Qi. Dynamic resource allocation using virtual machines for cloud computing environment[J]. IEEE Transaction on Parallel and Distributed Systems, 2013, 24(6) : 1107-1117.
  • 7Ramezani F, Lu Jie, Hussain F. An online fuzzy de- cision support system for resource management in cloud environments[C]//Proc of IFSA World Con- gress and NAFIPS Annual Meeting. Piscatway:IEEE, 2013: 754-759.
  • 8Kong Xiangzhen, Lin Chuang, Jiang Yixin, et al. Ef- ficient dynamic task scheduling in virtualized data centers with fuzzy prediction[J]. Journal of Network and Computer Applications, 2011, 34 (4): 1068- 1077.
  • 9Xu Dayu, Yang Shanlin, Luo He. A fusion model for CPU load prediction in cloud computing[J]. Journal of Networks, 2013, 8(11): 2606-2611.
  • 10Chang Yaochung, Chang Ruayshiung, Chuang Feng- wei. A predictive method for workload forecasting in the cloud environment [J]. Advanced Technologies, Embedded and Multimedia for Human-centric Com- puting, 2014, 260: 577-585.

共引文献218

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部