期刊文献+

提高机器人识别机率的线性推动策略

Linear push policies to increase probability of robot recognition
下载PDF
导出
摘要 针对机器人工业抓取场景中,堆叠的工件相互遮挡,难以识别的问题,提出一种基于聚类网格法的自适应线性推动策略AC-Grid。融合二维图像与点云高度渲染信息,根据抓取场景内工件的散乱堆叠情况分析出可靠的几何特征,为机器人优化出一条合理有效的工件推动路线。在V-REP仿真环境中制作80组“PushTD”系列的模拟场景数据集,对比实验结果表明,AC-Grid推动策略在仿真场景下最高能使平均目标匹配识别度提高至39.6%,在实际场景中能达到16.4%,在不同场景中均能起到显著分离和目标识别度提升的作用。 In the robotic industrial grasping scene,the stacked work-pieces obscure each other,making it difficult to identify.To solve the problem,an adaptive linear driving strategy AC-Grid based on the clustering grid method was demonstrated.Two-dimensional images and point cloud height rendering information were combined.Reliable geometric features were analyzed based on the scattered stacking of work-pieces in the captured scene.Therefore,a reasonable and effective work-piece pushing route for the robot was optimized.In the V-REP simulation environment,80 sets of simulation scene datasets of the“PushTD”series were produced.Results of comparative experiments show that the AC-Grid promotion strategy can increase the average target matching recognition degree to 39.6%in the simulation scene,which can reach 16.4%in real situation.The simulation results show the proposed method possess promotion in separation and target recognition in different scenarios.
作者 赵有港 张宏 徐刚 许允款 曾晶 ZHAO You-gang;ZHANG Hong;XU Gang;XU Yun-kuan;ZENG Jing(School of Mechanical Engineering,Taiyuan University of Science and Technology,Taiyuan 030024,China;Computer Vision Lab,Ningbo Institute of Materials Technology and Engineering,Chinese Academy of Sciences,Ningbo 315000,China)
出处 《计算机工程与设计》 北大核心 2023年第4期1242-1249,共8页 Computer Engineering and Design
基金 宁波市科技创新2025重大专项基金项目(2020Z013)。
关键词 机器人抓取 聚类网格 推动策略 图像处理 目标分离 目标识别 模拟场景数据集 robot grabbing clustering grid pushing strategy image processing target separation target recognition simulation scene datasets
  • 相关文献

参考文献1

二级参考文献5

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部