期刊文献+

Ultrasound-triggered piezocatalytic composite hydrogels for promoting bacterial-infected wound healing 被引量:1

原文传递
导出
摘要 Wound healing has become one of the basic issues faced by the medical community because of the susceptibility of skin wounds to bacterial infection.As such,it is highly desired to design a nanocomposite hydrogel with excellent antibacterial activity to achieve high wound closure effectiveness.Here,based on ultrasound-triggered piezocatalytic therapy,a multifunctional hydrogel is designed to promote bacteria-infected wound healing.Under ultrasonic vibration,the surface of barium titanate(BaTiO_(3),BT)nanoparticles embedded in the hydrogel rapidly generate reactive oxygen species(ROS)owing to the established strong built-in electric field,endowing the hydrogel with superior antibacterial efficacy.This modality shows intriguing advantages over conventional photodynamic therapy,such as prominent soft tissue penetration ability and the avoidance of serious skin phototoxicity after systemic administration of photosensitizers.Moreover,the hydrogel based on N-[tris(hydroxymethyl)methyl]acrylamide(THM),N-(3-aminopropyl)methacrylamide hydrochloride(APMH)and oxidized hyaluronic acid(OHA)exhibits outstanding self-healing and bioadhesive properties able to accelerate full-thickness skin wound healing.Notably,compared with the widely reported mussel-inspired adhesive hydrogels,OHA/THM-APMH hydrogel due to the multiple hydrogen bonds from unique tri-hydroxyl structure overcomes the shortage that catechol groups are easily oxidized,giving it long-term and repeatable adhesion performance.Importantly,this hybrid hydrogel confines BT nanoparticles to wound area and locally induced piezoelectric catalysis under ultrasound to eradicate bacteria,markedly improving the therapeutic biosafety and exhibits great potential for harmless treatment of bacteria-infected tissues.
出处 《Bioactive Materials》 SCIE CSCD 2023年第6期96-111,共16页 生物活性材料(英文)
基金 supported by Jiangsu Provincial Key Medical Center(No.YXZXA2016009) National Key Research and Development Program of China(No.2017YFA0701301) National Natural Science Foundation of China(No.22205127,21875101 and 22175085) Postgraduate Research&Practice Innovation Program of Jiangsu Province(SJCX22-0030) Jiangsu Funding Program for Excellent Postdoctoral Talent(NO.2022ZB692)。
  • 相关文献

同被引文献33

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部