摘要
为了解决当前的火焰识别算法中模型不紧凑、识别精度与效率较低等问题,提出一种基于显著性目标识别理论的轻量化火焰图像分割方法。该方法基于类U-net的编码器-解码器的架构,架构内部采用了显著性目标检测的方法,引入多层注意力机制,以分层的方式检测火焰目标。该方法在公开数据集上取得了较好的识别结果,且通过对比4种经典语义分割模型可知,交并比指标提升了5.70%~16.25%,F_(1)分数最高提升了10%,且该模型的平均绝对误差值也远远低于其他4种经典模型。表明该轻量化模型在火焰分割效果和运行速度上的指标最佳,有着较强的鲁棒性和有效性。
In order to solve the problems of non-compact models and low recognition accuracy and efficiency in current flame recognition algorithms,a lightweight flame image segmentation method based on salient target recognition theory is proposed.The method is based on a U-net-like encoder-decoder architecture,which uses salient target detection inside the architecture and introduces a multi-layer attention mechanism to detect flame targets in a hierarchical manner.The method achieves better recognition results on the public dataset.Comparing the four classical semantic segmentation models,it can be seen that the cross-comparison ratio index is improved by 5.70%~16.25%;the F_(1) score is improved by up to 10%;and the average absolute error value of the model in this paper is also much lower than the four classical models.It shows that the lightweight model in this paper has the best indexes in flame segmentation effect and operation speed,with strong robustness and effectiveness.
作者
马成建
王学辉
吕玉乾
Ma Chengjian;Wang Xuehui;Lv Yuqian(Linxia Fire and Rescue Division,Gansu Linxia 731100,China;University of Science and Technology of China,Anhui Hefei 230026,China;Wuwei Fire and Rescue Division,Gansu Wuwei 733000,China)
出处
《消防科学与技术》
CAS
北大核心
2023年第3期314-318,共5页
Fire Science and Technology
关键词
轻量化神经网络
火焰识别
显著性目标识别
lightweight neural network
flame recognition
significant target recognition