期刊文献+

基于IAFSA-SVM的心音信号识别研究 被引量:1

Research on Heart Sound Signal Recognition Based on IAFSA-SVM
下载PDF
导出
摘要 为提高心音信号识别的准确率,针对传统的支持向量机(SVM)在寻找最优核函数参数和惩罚因子时存在的优化问题,提出一种改进的人工鱼群算法(IAFSA)优化SVM的心音信号分类算法(IAFSA-SVM)。首先将采集到的含噪心音信号利用改进的小波阈值进行降噪处理,并进行时频域分析提取出特征值;然后采用改进的人工鱼群算法寻找最优SVM参数,并输入到SVM识别模型中进行心音信号的识别。通过仿真证实IAFSA-SVM算法相对于传统的SVM模型和粒子群优化的SVM模型提高了心音信号识别的准确率,为心脏病的诊断提供了新方法。 In order to improve the accuracy of heart sound signal recognition,in view of the optimization problems of traditional support vector machine(SVM)in finding the optimal kernel function parameters and penalty factors,an improved artificial fish school algorithm(IAFSA)is proposed to optimize the heart sounds of SVM Signal classification algorithm(IAFSA-SVM).First,the collected noisy heart sound signals were denoised using an improved wavelet threshold,and time-frequency domain analysis was performed to extract the characteristic values;Then the improved artificial fish school algorithm was used to find the optimal SVM parameters and input to the SVM recognition model recognition of heart sound signals in.the process.The simulation experiment proves that the IAFSA-SVM algorithm improves the accuracy of heart sound signal recognition compared with the traditional SVM model and the particle swarm optimization SVM model,and provides a new method for the diagnosis of heart disease.
作者 周克良 郭春燕 王威 沈林辉 ZHOU Ke-liang;GUO Chun-yan;WANG Wei;SHEN Lin-hui(School of Electrical Engineering and Automation,Jiangxi University of Science and Technology,Ganzhou Jiangxi 341000,China)
出处 《计算机仿真》 北大核心 2023年第3期289-294,共6页 Computer Simulation
基金 国家自然科学基金项目(61363011) 江西省自然科学基金项目(20151BAB207024)。
关键词 心音信号 人工鱼群算法 支持向量机 小波阈值 识别 Heart sound signal Artificial fish school algorithm Support vector machine(SVM) Wavelet threshold Recognition
  • 相关文献

参考文献3

二级参考文献24

  • 1姬水旺,姬旺田.支持向量机训练算法的实验比较[J].计算机应用研究,2004,21(11):18-20. 被引量:5
  • 2付辉.模糊C-均值(FCM)聚类算法的改进[J].科学技术与工程,2007,7(13):3121-3123. 被引量:11
  • 3戴汝为 周登勇.智能控制与适应性.第三届全球智能控制与自动化大会(WCICA'2000)[M].合肥:-,2000.11-17.
  • 401mez T, Dokur Z. Classification of heart sounds using an artificial neural network [ J ]. Elsevier, Pattern Recognition Letters, 2003,24( 1 ) :617 - 629.
  • 5Choi S. Detection of valvular heart disorders using wavelet packet decomposition and support vector machine [ J 3. Expert Systems with Applications ,2008,35 (4) : 1679 - 1687.
  • 6Saracoglu R. Hidden markov model-based classification of heart valve disease with PCA for dimension reduction [ J ]. Engineering Applications of Artificial Intelligence, 2012, 25(7) : 1523 - 1528.
  • 7Rios-Guti6rrez F, Alba-Flores R, Ejaz K, et al. Classification of four types of common murmurs using wavelets and a learning vector quantization network [ C //IEEE International Joint Conference on Neural Networks, 2006: 2206 - 2213.
  • 8LIU Ming-hui, XIE Yan-lu, YAO Zhi-qiang, et al. A new hybrid GMM/SVM for speaker verification [ C ]//18th International Conference on Pattern Recognition, 2006 : 314 -317.
  • 9Charalambous C D, Logothetis A. Maximum likelihood parameter estimation from incomplete data via the sensitivity equations : the continuous-time case [ J ]. IEEE Transactions on Automatic Control, 2000, 45 (5) : 928 - 934.
  • 10Reynolds D A, Rose R C. Rohust text-independent speaker identification using gaussian mixture speaker models [ J ]. 1EEE Transactions on Speech and Audio Processing, 1995, 3(1) :72 -83.

共引文献896

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部