期刊文献+

Degradation of 3D-printed magnesium phosphate ceramics in vitro and a prognosis on their bone regeneration potential 被引量:1

原文传递
导出
摘要 Regenerative bone implants promote new bone formation and ideally degrade simultaneously to osteogenesis.Although clinically established calcium phosphate bone grafts provide excellent osseointegration and osteoconductive efficacy,they are limited in terms of bioresorption.Magnesium phosphate(MP)based ceramics are a promising alternative,because they are biocompatible,mechanically extremely stable,and degrade much faster than calcium phosphates under physiological conditions.Bioresorption of an implant material can include both chemical dissolution as well as cellular resorption.We investigated the bioresorption of 3D powder printed struvite and newberyite based MP ceramics in vitro by a direct human osteoclast culture approach.The osteoclast response and cellular resorption was evaluated by means of fluorescence and TRAP staining,determination of osteoclast activities(CA II and TRAP),SEM imaging as well as by quantification of the ion release during cell culture.Furthermore,the bioactivity of the materials was investigated via SBF immersion,whereas hydroxyapatite precipitates were analyzed by SEM and EDX measurements.This bioactive coating was resorbed by osteoclasts.In contrast,only chemical dissolution contributed to bioresorption of MP,while no cellular resorption of the materials was observed.Based on our results,we expect an increased bone regeneration effect of MP compared to calcium phosphate based bone grafts and complete chemical degradation within a maximum of 1.5-3.1 years.
出处 《Bioactive Materials》 SCIE CSCD 2023年第1期376-391,共16页 生物活性材料(英文)
基金 funded by the Deutsche Forschungsgemeinschaft,grant number 417069397,as a collaboration project between the Ludwig Maximilians University Munich and the University Clinic of Würzburg the DFG for funding the crossbeam scanning electron microscope Zeiss CB 340(INST 105022/58-1 FUGG)within the DFG State Major Instrumentation Programme。
  • 相关文献

同被引文献16

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部