期刊文献+

高结晶单分散银粉表征及低温烧结活性分析

Highly crystallized monodisperse silver powder characterization and low-temperature sintering activity analysis
下载PDF
导出
摘要 采用液相还原法,通过改变纳米银晶浓度制得不同粒径的类球形银粉。采用扫描电子显微镜、比表面积分析仪、激光粒度分析仪等对银粉进行物理性能表征,并进行低温(200℃)烧结活性分析。结果表明:银粉颗粒结晶度高,单分散性好,且银粉粒径随加入的纳米银晶浓度提高呈规律性递减;样品4粒径最小,经低温烧结后银粉颗粒边界逐渐消失,烧结30 min后银粉完全烧结,形成交错联结的空间网络结构。高结晶单分散银粉的制备为HJT电池开发提供技术支撑。 Liquid phase reduction method is used to alter nano-silver crystal concentration and fabricate near spherical silver powder of different particle diameters.SEM,specific surface area instrument,and laser particle analyzer are used to characterize the physical properties of the silver powder.Besides,low-temperature(200℃)sintering activity analysis is carried out.The results show that the silver powder particle is highly crystallized and in a good monodisperse state,and the silver powder particle diameter regularly decreases with increasing added nano-silver crystal concentration;sample 4 has the smallest particle diameter and gradually lost silver powder particle boundary after low-temperature sintering.After 30 min,the silver powder is fully sintered,forming an interconnected spatial grid structure.The fabrication of highly crystallized monodisperse silver powder provides technical support for the development of the HJT battery.
作者 孙嘉若 邢志军 庞亿 巩小萌 胡影 Sun Jiaruo;Xing Zhijun;Pang Yi;Gong Xiaomeng;Hu Ying(Changchun Gold Research Institute Co.,Ltd.)
出处 《黄金》 CAS 2023年第4期1-4,共4页 Gold
关键词 银粉 液相还原 粒度 低温烧结 高结晶 silver powder liquid phase reduction particle size low-temperature sintering highly crystallized
  • 相关文献

参考文献8

二级参考文献74

  • 1刘晓妮,孟家光,王红兴.纳米银-壳聚糖抗菌棉针织物制备及性能研究[J].针织工业,2021(6):49-53. 被引量:10
  • 2王小兴,杨克昱,李旭红.纳米银湿敷联合生长因子及中药标准化治疗糖尿病足感染的临床观察[J].中国标准化,2021(12):160-162. 被引量:1
  • 3HIDEYUKI N, KYLE J M B, BARTLOMIEJ K. Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles [J]. Nature, 2009, 460(16): 371 375.
  • 4GOLDEN M S, BJONNES A C, GEORGIADIS R M. Distance- and wavelength-dependent dielectric function of Au nanoparticles by angle-resolved surface plasmon resonance imaging [J]. J Phys Chem C, 2010, 114: 8837-8843.
  • 5PEREZ J J, SANTOS I P, MARZAN L M. Gold nanorods: Synthesis, characterization and applications [J]. Coordin Chem Rev, 2005, 249: 1870-1901.
  • 6JIANG D L, XIE J M, CHEN M, LI D, ZHU J J, QIN H R. Facile route to silver submicron-sized particles and their catalytic activity towards 4-nitrophenol reduction [J]. Journal of Alloys and Compounds, 2011,5: 1975-1979.
  • 7YIZ, XUXB, LIXB, LUOJS, WUWD, TANGYJ, YIYG. Facile preparation of Au/Ag bimetallic hollow nanospheres and its application in surface-enhanced Raman scattering [J]. Applied Surface Science, 2011,258: 212-217.
  • 8XUE C, M1RKIN C A. pH-switchable silver nanoprism growth pathways [J]. Angew Chem, 2007, 10: 2082-2084.
  • 9JIN R, CAO Y, MIRKIN C A. Photoinduced conversion of silver nanospheres to nanoprisms [J]. Science, 2001, 294: 1901-1903.
  • 10ROCHA T C R, ZANCHE D. Structural defects and their role in the growth of Ag triangular nanoplates [J]. J Phys Chem C, 2007, 111 : 6989-6993.

共引文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部