期刊文献+

基于盒维数和参数筛选的风力机轴承故障诊断方法研究 被引量:2

Research on fault diagnosis method of wind turbine bearing based on box dimension and parameter selection
下载PDF
导出
摘要 风力发电机作为一种清洁能源被广泛地应用,轴承作为风电机组的核心零部件故障诊断极为重要,针对风力机轴承故障诊断的问题,提出了一种基于盒维数计算和参数筛选的故障诊断方法,并通过支持向量机进行训练和分类。首先,通过盒维数算法计算盒维数和其它特征参数,然后筛选正确参数并分类得到各组参数的准确度,最后确定不同故障形式下样本的特征,最后筛选出准确度较高的特征参数,避免了复杂的信号预处理以及人工进行信号提取的过程,可以高效解决风力机轴承故障诊断的准确率低、时效性差等问题。 As a kind of clean energy,wind turbine is widely used,and fault diagnosis of bearing as the core component for wind turbine is extremely important.For the problem of fault diagnosis of wind turbine bearing,a fault diagnosis method based on box dimension calculation and parameter screening is proposed,which is trained and classified by support vector machine.First,calculate the box dimension and other feature parameters through the box dimension algorithm,then screen the correct parameters and classify them to obtain the accuracy of each group of parameters,finally determine the characteristics of samples under different fault forms and the feature parameters with high accuracy,avoiding the complex signal preprocessing and manual signal extraction process,which can effectively solve the problems of low accuracy and poor timeliness of wind turbine bearing fault diagnosis.
作者 刘传宇 郑世辉 孙文浩 王子鸣 LIU Chuan-yu;ZHENG Shi-hui;SUN Wen-hao;WANG Zi-ming(College of Mechanical Engineering,Shenyang Ligong University,Shenyang 110159,China)
出处 《重型机械》 2023年第2期33-37,共5页 Heavy Machinery
关键词 轴承 故障诊断 盒维数 支持向量机 风力机 bearing fault diagnosis box dimensions support vector machines wind turbine
  • 相关文献

参考文献9

二级参考文献55

  • 1康静秋,孙芳,柳亦兵.基于关联维数改进算法滚动轴承故障诊断[J].仪器仪表学报,2006,27(z1):404-406. 被引量:10
  • 2孙才新,许高峰,唐炬,陆宠惠,侍海军.以盒维数和信息维数为识别特征量的GIS局部放电模式识别方法[J].中国电机工程学报,2005,25(3):100-104. 被引量:62
  • 3徐玉秀,钟建军,闻邦椿.旋转机械动态特性的分形特征及故障诊断[J].机械工程学报,2005,41(12):186-189. 被引量:26
  • 4史朝辉,王晓丹,赵士敏,杨建勋.改进的SVM决策树分类算法[J].空军工程大学学报(自然科学版),2006,7(2):32-35. 被引量:10
  • 5Logan D, Mathew J. Using the correlation dimension for vibration fault diagnosis of rolling element bearings-Ⅰ. Basic concepts[ J ]. Mechanical Systems and Signal Processing, 1996. 10(3) :241 -250.
  • 6Logan D B, Mathew J. Using the correlation dimension for vibration fault diagnosis of rolling element bearings-Ⅱ. Selection of experimental parameters [ J ]. Mechanical Systems and Signal Processing, 1996. 10(3) :251 -264.
  • 7Chaudhuri B B, Sarkar N. Texture segmentation using fractal dimension[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995. 17( 1 ) :72 -77.
  • 8Maragos P, Sun F K. Measuring the fractal dimension of signals: morphological covers and iterative optimization [ J ]. IEEE Transactions on Signal Processing, 1993. 41 ( 1 ) : 108 -121.
  • 9Xia Y, Feng D, Zhao R. Morphology-based multifractal estimation for texture segmentation [J]. IEEE Transactions on Image Processing, 2006. 15 (3) : 614 - 623.
  • 10Maragos P, Potamianos A. Fractal dimensions of speech sounds: Computation and application to automatic speech recognition[J]. Journal of the Acoustical Society of America, 1999. 105(3) :1925 - 1932.

共引文献85

同被引文献40

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部