期刊文献+

幅度调制器对宽带低相干光时频特性的影响 被引量:2

Influence of amplitude modulator on time-frequency characteristics ofbroadband low coherence light
下载PDF
导出
摘要 通过改变马赫-曾德干涉型幅度调制器的射频系数和偏置电压,调制光脉冲的强度。研究了幅度调制器对宽带低相干光时频特性影响的规律,分析调制后的光脉冲时域波形分布、光谱和复相干度模值曲线,结果表明,射频系数对光脉冲的光谱成分和时间相干性无明显的调制,射频系数存在最佳工作区间使得输出光脉冲的波形保真度最佳。当偏置电压处于半波电压时,光脉冲的时域波形保真度最好,时间相干性最低,但光谱成分会缺失。理论仿真了调制器的臂长差、偏置电压对宽带低相干光频域特性的影响,与由实测光谱计算出调制器的臂长差,实验结果进行了对比,结果基本符合。由于实际的电光重叠积分因子随加载电压值变化,因而模拟与实测结果存在误差,但研究得出的规律将为低相干脉冲精密整形系统提供更为明确的方向。 Low-coherent light pulses with precise time-shaping capability have the potential to suppress theinstability of laser-plasma interactions in laser inertial confinement fusion,but related research is currently lacking.Inthis paper,the law of the influence of the amplitude modulator on the time-frequency characteristics of broadband low-coherent light was studied,and the intensity of the light pulse was modulated by changing the RF coefficient and biasvoltage of the Mach-Zehnder interferometric amplitude modulator.The time domain waveform distribution,spectrumand complex coherence modulus curve of the modulated light pulse were analyzed.The research shows that the RFcoefficient has no obvious modulation on the spectral composition and temporal coherence of the light pulse,and theRF coefficient has an optimal working range,which makes the waveform fidelity of the output light pulse the best.When the bias voltage is at half-wave voltage,the time domain waveform fidelity of the optical pulse is the best,andthe temporal coherence is the lowest,but the spectral components are missing.The arm length difference of themodulator is calculated from the measured spectrum,and the influence of the arm length difference and bias voltageon the frequency domain characteristics of the broadband low-coherent light is simulated theoretically,the results arein good agreement with the experimental results.As the actual electro-optic overlap integration factor changes with thevoltage,there is an error between the simulation and the actual measurement results.However,the laws obtained fromthe research will provide a more clear direction for low coherent pulse precision shaping system development.
作者 王桔 饶大幸 贺瑞敬 高妍琦 崔勇 赵晓晖 史海涛 隋展 黄昌清 Wang Ju;Rao Daxing;He Ruijing;Gao Yanqi;Cui Yong;Zhao Xiaohui;Shi Haitao;Sui Zhan;Huang Changqing(College of Optics and Electronic Technology,China Jiliang University,Hangzhou 310018,China;Shanghai Institute of Laser Plasma,CAEP,Shanghai 201800,China)
出处 《强激光与粒子束》 CAS CSCD 北大核心 2023年第5期22-28,共7页 High Power Laser and Particle Beams
关键词 宽带低相干光 脉冲整形 铌酸锂幅度调制器 时-频特性 时间相干性 broadband low-coherent light pulse shaping lithium niobate amplitude modulator time-frequencycharacteristics temporal coherence
  • 相关文献

参考文献4

二级参考文献38

  • 1Nuckolls J H, Wood L, Thiessen A, et al. Laser compression of matter to super-high densities: thermonuclear (CTR) applications[J]. Na- ture, 1972, 239(15): 139-142.
  • 2Lindl J. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J]. Phys Plasmas, 1995, 2(11): 3993-4024.
  • 3Atzeni S, Meyer ter Vehn J. The Physics of Inertial Fusion[M]. New York: Oxford University, 2004.
  • 4Lindl J, Landen O, Edwards J, et al. Review of the National Ignition Campaign 2009-2012[J]. Phys Plasmas, 2014, 21: 020501.
  • 5Moses E I, Boyd R N, Remington B A, et al. The National Ignition Facility: Ushering in a new age for high energy density scienee[J]. Phys Plasmas, 2009, 16: 041006.
  • 6Gloria J, Bastian J, Bayer C, et al. Target design for ignition experiments on the laser Megajoule facility[J] Plasma Phys Control Fusion, 2006, 48(12B) : B75-B82.
  • 7Betti R, Zhou C D, Anderson K S, et al. Shock ignition of thermonuclear fuel with high areal density[J]. Phys Rev Lett, 2007, 98 155001.
  • 8Ribeyre X, Schurtz G, LafonM, et al. Shock ignition: an alternative scheme for HiPER[J]. Plasma Phys Control Fusion, 2009, 51 015013.
  • 9Perkins L J, Betti R, LaFortune K N, et al. Shock ignition: A new approach to high gain inertial confinement fusion on National Ignition Facility[J]. Phys Rev Lett, 2009, 103: 045004.
  • 10Schmitt A J, Bates J W, Ohenschain S P, et al. Shock ignition target design for inertial fusion energy[J]. Phys Plasmas, 2010, 17: 042701.

共引文献12

同被引文献49

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部